Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2002_8_1_a6, author = {V. G. Konovalov}, title = {A mathematical model of the {DQDB} protocol}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {71--83}, publisher = {mathdoc}, volume = {8}, number = {1}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a6/} }
V. G. Konovalov. A mathematical model of the DQDB protocol. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 71-83. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a6/
[1] Mukherjee B., Bisdikian C., “A journey through the DQDB network literature”, Performance Evaluation, 165 (1992), 129–158 | DOI
[2] Tran-Gia P., Stock T., “Approximate performance analysis of the DQDB access protocol”, Proc. International Teletraffic Congress (ITC) (Adelaida, Australia, September 1989), Comput. Networks ISDN Systems, 20, 1990, 231–240
[3] Sharma V., “Some asymptotic results on the DQDB protocol”, Presented in Seminar on Teletraffic Analysis Methods for Current and Future Telecom Networks, International Teletraffic Congress (ITC) (Bangalor, September 1993)
[4] Mukherjee B., Bisdikian C., “Alternative strategies for improving the fairness in and an analytical model of the DQDB network”, IEEE Transactions on Computers, 42:2 (1993) | DOI
[5] Kalashnikov V., Mathematical Methods in Queueing Theory, Kluwer Acad. Publ., 1994 | MR
[6] Kalashnikov V., Topics on Regenerative Processes, CRC Press, 1994 | MR | Zbl
[7] Kalashnikov V., “Crossing and comparison of regenerative processes”, Acta Appl. Math., 34 (1994), 151–386 | DOI | MR