A mathematical model of the DQDB protocol
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 71-83

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a mathematical model of the Distributed Queue Bus (DQDB) protocol intended for data flow control in communication networks. We assume that station's input traffic is a renewal process. The proposed Markov chain is the most adequate model for the DQDB protocol among those already studied in several articles. We derive a positive recurrent condition in the case of two stations.
@article{FPM_2002_8_1_a6,
     author = {V. G. Konovalov},
     title = {A mathematical model of the {DQDB} protocol},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a6/}
}
TY  - JOUR
AU  - V. G. Konovalov
TI  - A mathematical model of the DQDB protocol
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 71
EP  - 83
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a6/
LA  - ru
ID  - FPM_2002_8_1_a6
ER  - 
%0 Journal Article
%A V. G. Konovalov
%T A mathematical model of the DQDB protocol
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 71-83
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a6/
%G ru
%F FPM_2002_8_1_a6
V. G. Konovalov. A mathematical model of the DQDB protocol. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 71-83. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a6/