$A^{\land}$-integration of Fourier transformations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 307-312
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorems are proved.
Theorem 1. Let $f$ be a function of bounded variation on $\mathbb R$, $f(x)\to0$ ($x\to\pm\infty$), and $\varphi\in L(\mathbb R)$ be a bounded function. Then
$$
(A^{\land})\!\int\limits_{\mathbb R}\hat f(x)\bar{\hat\varphi}(x)\,dx
=(L)\!\int\limits_{\mathbb R}f(x)\bar\varphi(x)\,dx.
$$ Theorem 2. Let $f(x)=\sum\limits_{n=-\infty}^{+\infty}\alpha_ke^{ikx}$, where $\alpha_k\in\mathbb C$, $\{\alpha_k\}$ is a sequence with bounded variation, $\alpha_k\to0$ ($k\to\pm\infty$), and let $g(x)=\sum\limits_{j=-\infty}^{+\infty} \beta_j e^{ijx}$, where $\sum\limits_{j=-\infty}^{+\infty}|\beta_j|\infty$. Then
$$
(A)\!\int\limits_{0}^{2\pi}f(x)\bar g(x)\,dx
=\sum_{m=-\infty}^{+\infty}\alpha_m\bar\beta_m
$$
and
$$
(A)\!\int\limits_{0}^{2\pi}f(x)g(x)\,dx
=\sum_{m=-\infty}^{+\infty}\alpha_m\beta_{-m}.
$$
@article{FPM_2002_8_1_a23,
author = {Anter Ali Alsayad},
title = {$A^{\land}$-integration of {Fourier} transformations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {307--312},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a23/}
}
Anter Ali Alsayad. $A^{\land}$-integration of Fourier transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 307-312. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a23/