$A^{\land}$-integration of Fourier transformations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 307-312
The following theorems are proved. Theorem 1. Let $f$ be a function of bounded variation on $\mathbb R$, $f(x)\to0$ ($x\to\pm\infty$), and $\varphi\in L(\mathbb R)$ be a bounded function. Then $$ (A^{\land})\!\int\limits_{\mathbb R}\hat f(x)\bar{\hat\varphi}(x)\,dx =(L)\!\int\limits_{\mathbb R}f(x)\bar\varphi(x)\,dx. $$ Theorem 2. Let $f(x)=\sum\limits_{n=-\infty}^{+\infty}\alpha_ke^{ikx}$, where $\alpha_k\in\mathbb C$, $\{\alpha_k\}$ is a sequence with bounded variation, $\alpha_k\to0$ ($k\to\pm\infty$), and let $g(x)=\sum\limits_{j=-\infty}^{+\infty} \beta_j e^{ijx}$, where $\sum\limits_{j=-\infty}^{+\infty}|\beta_j|\infty$. Then $$ (A)\!\int\limits_{0}^{2\pi}f(x)\bar g(x)\,dx =\sum_{m=-\infty}^{+\infty}\alpha_m\bar\beta_m $$ and $$ (A)\!\int\limits_{0}^{2\pi}f(x)g(x)\,dx =\sum_{m=-\infty}^{+\infty}\alpha_m\beta_{-m}. $$
@article{FPM_2002_8_1_a23,
author = {Anter Ali Alsayad},
title = {$A^{\land}$-integration of {Fourier} transformations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {307--312},
year = {2002},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a23/}
}
Anter Ali Alsayad. $A^{\land}$-integration of Fourier transformations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 307-312. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a23/
[1] Ulyanov P. L., “Primenenie $A$-integrirovaniya k odnomu klassu trigonometricheskikh ryadov”, Mat. sbornik, 35(77):3 (1954), 469–490 | MR
[2] Titchmarsh E. C., “On conjugate functions”, Proc. London Math. Soc., 29 (1929), 49–80 | DOI
[3] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, ONTI, M.-L., 1936
[4] Ilin V. A., Sadovnichii V. A., Sendov Bl. Kh., Matematicheskii analiz, T. 2, Izd-vo Moskovskogo universiteta, M., 1987
[5] Anter A., “Primenenie $\mathrm{hA}$-integrirovaniya k preobrazovaniyu Fure”, Fundam. i prikl. mat., 3:2 (1997), 351–357 | MR | Zbl
[6] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR