T-prime varieties and algebraic algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 221-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show in the paper that any non-matrix T-prime variety of associative algebras with unit over a field of characteristic $p>0$ is generated by an algebraic algebra of bounded index over some field.
@article{FPM_2002_8_1_a16,
     author = {I. Yu. Sviridova},
     title = {T-prime varieties and algebraic algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {221--243},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a16/}
}
TY  - JOUR
AU  - I. Yu. Sviridova
TI  - T-prime varieties and algebraic algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2002
SP  - 221
EP  - 243
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a16/
LA  - ru
ID  - FPM_2002_8_1_a16
ER  - 
%0 Journal Article
%A I. Yu. Sviridova
%T T-prime varieties and algebraic algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2002
%P 221-243
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a16/
%G ru
%F FPM_2002_8_1_a16
I. Yu. Sviridova. T-prime varieties and algebraic algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 221-243. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a16/

[1] Kemer A. R., “Tozhdestva konechno porozhdennykh algebr nad beskonechnym polem”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 726–753 | MR | Zbl

[2] Kemer A. R., “On the radical of relatively free algebra”, Abstracts of Ring Theory Conference, Miskolc, Hungary, 1996, 29

[3] Sviridova I. Yu., “Varieties and algebraic algebras of bounded degree”, Abstracts of Ring Theory Conference, Miskolc, Hungary, 1996, 60–61