T-prime varieties and algebraic algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 221-243
We show in the paper that any non-matrix T-prime variety of associative algebras with unit over a field of characteristic $p>0$ is generated by an algebraic algebra of bounded index over some field.
@article{FPM_2002_8_1_a16,
author = {I. Yu. Sviridova},
title = {T-prime varieties and algebraic algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {221--243},
year = {2002},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a16/}
}
I. Yu. Sviridova. T-prime varieties and algebraic algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 221-243. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a16/
[1] Kemer A. R., “Tozhdestva konechno porozhdennykh algebr nad beskonechnym polem”, Izv. AN SSSR. Ser. matem., 54:4 (1990), 726–753 | MR | Zbl
[2] Kemer A. R., “On the radical of relatively free algebra”, Abstracts of Ring Theory Conference, Miskolc, Hungary, 1996, 29
[3] Sviridova I. Yu., “Varieties and algebraic algebras of bounded degree”, Abstracts of Ring Theory Conference, Miskolc, Hungary, 1996, 60–61