On lower bound of the norm of integral convolution operator
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 141-150
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the lower bound problem for the norm of integral convolution operator. We prove that if $1$, $K(x) \geq 0\ \forall x\in\mathbb R^n$ and the operator
$$
(Af)(x)=\int_{\mathbb R^n}K(x-y)f(y)\,dy=K*f
$$
is a bounded operator from $L_p$ to $L_q$, then there exists a constant $C(p,q,n)$ such that $$
C\sup_{e\in Q(C)}\frac{1}{|e|^{1/p-1/q}}
\int_e K(x)\,dx\leq\|A\|_{L_p\to L_q}.
$$
Here $Q(C)$ is the set of all Lebesgue measurable sets of finite measure that satisfy the condition $|e+e|\leq C\cdot|e|$, $|e|$ being the Lebesgue measure of the set $e$. If $1$, the operator $A$ is a bounded operator from $L_p$ to $L_q$, and $\mathfrak Q$ is the set of all harmonic segments, then there exists a constant $C(p,q,n)$ such that
$$
C\sup_{e\in\mathfrak Q}\frac{1}{|e|^{1/p-1/q}}
\biggl|\,\int_e K(x)\,dx\biggr|\leq\|A\|_{L_p\to L_q}.
$$
@article{FPM_2002_8_1_a11,
author = {E. D. Nursultanov and K. S. Saidahmetov},
title = {On lower bound of the norm of integral convolution operator},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {141--150},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a11/}
}
TY - JOUR AU - E. D. Nursultanov AU - K. S. Saidahmetov TI - On lower bound of the norm of integral convolution operator JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 141 EP - 150 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a11/ LA - ru ID - FPM_2002_8_1_a11 ER -
E. D. Nursultanov; K. S. Saidahmetov. On lower bound of the norm of integral convolution operator. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 141-150. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a11/