Splitting of perturbated differential operators with unbounded operator coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 1-16
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain some theorems on splitting of differential operators of the form
$$
\mathcal L=\frac{d}{dt}-A_0-BA_0^\nu\colon\,
D(\mathcal L)\subset C(\mathbb R,\mathcal Y)\to C(\mathbb R,\mathcal Y)
$$
acting in the Banach space $C(\mathbb R,\mathcal Y)$ of continuous and bounded functions defined on real axis $\mathbb R$ with values in the Banach space $\mathcal Y$. The linear operator $A_0\colon\,D(A_0)\subset\mathcal Y\to\mathcal Y$ is the generating operator of a strongly continuous semigroup of operators and its spectrum does not intersect the imaginary axis $i\mathbb R$. Here $A_0^\nu$, $\nu\in[0,1)$, is a fractional power of $A_0$ and $B\colon\,C(\mathbb R,\mathcal Y)\to C(\mathbb R,\mathcal Y)$ is a bounded linear operator.
@article{FPM_2002_8_1_a0,
author = {A. G. Baskakov},
title = {Splitting of perturbated differential operators with unbounded operator coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1--16},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a0/}
}
TY - JOUR AU - A. G. Baskakov TI - Splitting of perturbated differential operators with unbounded operator coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2002 SP - 1 EP - 16 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a0/ LA - ru ID - FPM_2002_8_1_a0 ER -
A. G. Baskakov. Splitting of perturbated differential operators with unbounded operator coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 8 (2002) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/FPM_2002_8_1_a0/