On the uniform dimension of skew polynomial rings in many variables
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1107-1121
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be an associative ring, $X=\{x_i\colon\ i\in\Gamma\}$ be a nonempty set of variables, $F=\{f_i\colon\ i\in\Gamma\}$ be a family of injective ring endomorphisms of $R$ and $A(R,F)$ be the Cohn–Jordan extension. In this paper we prove that the left uniform dimension of the skew polynomial ring $R[X,F]$ is equal to the left uniform dimension of $A(R,F)$, provided that $Aa\ne0$ for all nonzero $a\in A$. Furthermore, we show that for semiprime rings the equality $\dim R=\dim R[X,F]$ does not hold in the general case. The following problem is still open. Does $\dim R=\dim R[x,f]$ hold if $R$ is a semiprime ring, $f$ is an injective ring endomorphism of $R$ and $\dim R\infty$?
@article{FPM_2001_7_4_a8,
author = {V. A. Mushrub},
title = {On the uniform dimension of skew polynomial rings in many variables},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1107--1121},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a8/}
}
V. A. Mushrub. On the uniform dimension of skew polynomial rings in many variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1107-1121. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a8/