On the uniform dimension of skew polynomial rings in many variables
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1107-1121.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an associative ring, $X=\{x_i\colon\ i\in\Gamma\}$ be a nonempty set of variables, $F=\{f_i\colon\ i\in\Gamma\}$ be a family of injective ring endomorphisms of $R$ and $A(R,F)$ be the Cohn–Jordan extension. In this paper we prove that the left uniform dimension of the skew polynomial ring $R[X,F]$ is equal to the left uniform dimension of $A(R,F)$, provided that $Aa\ne0$ for all nonzero $a\in A$. Furthermore, we show that for semiprime rings the equality $\dim R=\dim R[X,F]$ does not hold in the general case. The following problem is still open. Does $\dim R=\dim R[x,f]$ hold if $R$ is a semiprime ring, $f$ is an injective ring endomorphism of $R$ and $\dim R\infty$?
@article{FPM_2001_7_4_a8,
     author = {V. A. Mushrub},
     title = {On the uniform dimension of skew polynomial rings in many variables},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1107--1121},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a8/}
}
TY  - JOUR
AU  - V. A. Mushrub
TI  - On the uniform dimension of skew polynomial rings in many variables
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 1107
EP  - 1121
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a8/
LA  - ru
ID  - FPM_2001_7_4_a8
ER  - 
%0 Journal Article
%A V. A. Mushrub
%T On the uniform dimension of skew polynomial rings in many variables
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 1107-1121
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a8/
%G ru
%F FPM_2001_7_4_a8
V. A. Mushrub. On the uniform dimension of skew polynomial rings in many variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 1107-1121. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a8/