Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 983-992
Voir la notice de l'article provenant de la source Math-Net.Ru
A Grothendieck category can be presented as a quotient category of the category $(R\mathrm{\text{-}mod},\mathrm{Ab})$ of generalized modules. In turn, this fact is deduced from the following theorem: if $\mathcal C$ is a Grothendieck category and there exists a finitely generated projective object $P\in\mathcal C$, then the quotient category $\mathcal C/\mathcal S^P$, $\mathcal S^P=\{C\in\mathcal C \mid{}_C(P,C)=0\}$ is equivalent to the module category $\mathrm{Mod\text{-}}R$, $R={}_C(P,P)$.
@article{FPM_2001_7_4_a1,
author = {G. A. Garkusha and A. I. Generalov},
title = {Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {983--992},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/}
}
TY - JOUR
AU - G. A. Garkusha
AU - A. I. Generalov
TI - Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2001
SP - 983
EP - 992
VL - 7
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/
LA - ru
ID - FPM_2001_7_4_a1
ER -
%0 Journal Article
%A G. A. Garkusha
%A A. I. Generalov
%T Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 983-992
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/
%G ru
%F FPM_2001_7_4_a1
G. A. Garkusha; A. I. Generalov. Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 983-992. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/