Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 983-992.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Grothendieck category can be presented as a quotient category of the category $(R\mathrm{\text{-}mod},\mathrm{Ab})$ of generalized modules. In turn, this fact is deduced from the following theorem: if $\mathcal C$ is a Grothendieck category and there exists a finitely generated projective object $P\in\mathcal C$, then the quotient category $\mathcal C/\mathcal S^P$, $\mathcal S^P=\{C\in\mathcal C \mid{}_C(P,C)=0\}$ is equivalent to the module category $\mathrm{Mod\text{-}}R$, $R={}_C(P,P)$.
@article{FPM_2001_7_4_a1,
     author = {G. A. Garkusha and A. I. Generalov},
     title = {Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {983--992},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/}
}
TY  - JOUR
AU  - G. A. Garkusha
AU  - A. I. Generalov
TI  - Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 983
EP  - 992
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/
LA  - ru
ID  - FPM_2001_7_4_a1
ER  - 
%0 Journal Article
%A G. A. Garkusha
%A A. I. Generalov
%T Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 983-992
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/
%G ru
%F FPM_2001_7_4_a1
G. A. Garkusha; A. I. Generalov. Grothendieck categories as quotient categories of $(R\mathrm{\text{-}mod},\mathrm{Ab})$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 4, pp. 983-992. http://geodesic.mathdoc.fr/item/FPM_2001_7_4_a1/