On leading monomials of some T-ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 257-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some analogs of the Gröbner base for T-ideals are considered. A sequence of normal monomials of the T-ideal $T_2^{(3)}$ is built so that the monomials are independent w.r.t. the operation of monotonous substitution and the insertion operation. Also a theorem is proved stating that for algebras without $1$ a multilinear identity of the form $w_1[x_1,x_2]w_2$, where $x_1$, $x_2$ are variables and $w_1$, $w_2$ are monomials, belongs to every T-ideal that is finitely based w.r.t. the inclusion relation of the leading monomials.
@article{FPM_2001_7_1_a13,
     author = {V. V. Shchigolev},
     title = {On leading monomials of some {T-ideals}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {257--266},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a13/}
}
TY  - JOUR
AU  - V. V. Shchigolev
TI  - On leading monomials of some T-ideals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2001
SP  - 257
EP  - 266
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a13/
LA  - ru
ID  - FPM_2001_7_1_a13
ER  - 
%0 Journal Article
%A V. V. Shchigolev
%T On leading monomials of some T-ideals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2001
%P 257-266
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a13/
%G ru
%F FPM_2001_7_1_a13
V. V. Shchigolev. On leading monomials of some T-ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 7 (2001) no. 1, pp. 257-266. http://geodesic.mathdoc.fr/item/FPM_2001_7_1_a13/