A~construction of principal ideal rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1257-1261
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be an algebraic number field, and let $R$ be the ring that consists of “polynomials” $a_1x^{\lambda_1}+\ldots+a_s x^{\lambda_s}$ ($a_i\in K$, $\lambda_i\in\mathbb{Q}$, $\lambda_i\geq0$). Consider the set of elements $S$ closed under multiplication and generated by the elements $x^{1/m}$, $1+x^{1/m}+\ldots+x^{k/m}$ ($m$ and $k$ vary). We prove that the ring $RS^{-1}$ is a principal ideal ring.
@article{FPM_2000_6_4_a21,
author = {Yu. V. Kuz'min},
title = {A~construction of principal ideal rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1257--1261},
publisher = {mathdoc},
volume = {6},
number = {4},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a21/}
}
Yu. V. Kuz'min. A~construction of principal ideal rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1257-1261. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a21/