A~construction of principal ideal rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1257-1261.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be an algebraic number field, and let $R$ be the ring that consists of “polynomials” $a_1x^{\lambda_1}+\ldots+a_s x^{\lambda_s}$ ($a_i\in K$, $\lambda_i\in\mathbb{Q}$, $\lambda_i\geq0$). Consider the set of elements $S$ closed under multiplication and generated by the elements $x^{1/m}$, $1+x^{1/m}+\ldots+x^{k/m}$ ($m$ and $k$ vary). We prove that the ring $RS^{-1}$ is a principal ideal ring.
@article{FPM_2000_6_4_a21,
     author = {Yu. V. Kuz'min},
     title = {A~construction of principal ideal rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1257--1261},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a21/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
TI  - A~construction of principal ideal rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 1257
EP  - 1261
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a21/
LA  - ru
ID  - FPM_2000_6_4_a21
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%T A~construction of principal ideal rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 1257-1261
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a21/
%G ru
%F FPM_2000_6_4_a21
Yu. V. Kuz'min. A~construction of principal ideal rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 4, pp. 1257-1261. http://geodesic.mathdoc.fr/item/FPM_2000_6_4_a21/