Semilocal right distributive skew Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 913-921
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the following conditions are equivalent. (1) The skew Laurent series ring $A((t,\varphi))$ is semilocal and right distributive. (2) The ring $A((t,\varphi))$ is a finite direct product of right uniserial rings. (3) The ring $A((t,\varphi))$ is a finite direct product of right uniserial right Artinian rings. (4) The ring $A$ is a finite direct product of right uniserial right Artinian rings $A_i$, and $\varphi(A_i)=A_i$ for all $i$.
@article{FPM_2000_6_3_a20,
author = {D. A. Tuganbaev},
title = {Semilocal right distributive skew {Laurent} series rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {913--921},
year = {2000},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a20/}
}
D. A. Tuganbaev. Semilocal right distributive skew Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 913-921. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a20/