Semilocal right distributive skew Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 913-921.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the following conditions are equivalent. (1) The skew Laurent series ring $A((t,\varphi))$ is semilocal and right distributive. (2) The ring $A((t,\varphi))$ is a finite direct product of right uniserial rings. (3) The ring $A((t,\varphi))$ is a finite direct product of right uniserial right Artinian rings. (4) The ring $A$ is a finite direct product of right uniserial right Artinian rings $A_i$, and $\varphi(A_i)=A_i$ for all $i$.
@article{FPM_2000_6_3_a20,
     author = {D. A. Tuganbaev},
     title = {Semilocal right distributive skew {Laurent} series rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {913--921},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a20/}
}
TY  - JOUR
AU  - D. A. Tuganbaev
TI  - Semilocal right distributive skew Laurent series rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 913
EP  - 921
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a20/
LA  - ru
ID  - FPM_2000_6_3_a20
ER  - 
%0 Journal Article
%A D. A. Tuganbaev
%T Semilocal right distributive skew Laurent series rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 913-921
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a20/
%G ru
%F FPM_2000_6_3_a20
D. A. Tuganbaev. Semilocal right distributive skew Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 3, pp. 913-921. http://geodesic.mathdoc.fr/item/FPM_2000_6_3_a20/