Periodic trajectories in a~Denjoy counterexample
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 617-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for the parametric class of piecewise linear maps $$ f(x)=\begin{cases} \max(k_1x+1,w), 0, \\ \min(k_2x-1,w), \geq0 \end{cases} $$ ($k_1$ and $k_2$ are greater than one) the range of the parameter $w$, where iterations $x_{n+1}=f(x_n)$ are nonperiodic, has zero Lebesgue measure.
@article{FPM_2000_6_2_a17,
     author = {L. K. Bakalinski},
     title = {Periodic trajectories in {a~Denjoy} counterexample},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {617--620},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a17/}
}
TY  - JOUR
AU  - L. K. Bakalinski
TI  - Periodic trajectories in a~Denjoy counterexample
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2000
SP  - 617
EP  - 620
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a17/
LA  - ru
ID  - FPM_2000_6_2_a17
ER  - 
%0 Journal Article
%A L. K. Bakalinski
%T Periodic trajectories in a~Denjoy counterexample
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2000
%P 617-620
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a17/
%G ru
%F FPM_2000_6_2_a17
L. K. Bakalinski. Periodic trajectories in a~Denjoy counterexample. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 617-620. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a17/