On two-dimensional integral varieties of a class of discontinuous Hamiltonian systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 357-377
We consider the following discontinuous Hamiltonian system \begin{gather*} \dot y=I\operatorname{grad}H(y), \\ H(y)=H_0(y)+u H_1(y),\quad u=\operatorname{sgn}H_1(y),\quad I=\begin{pmatrix} 0 -E \\ E 0 \end{pmatrix}. \end{gather*} Here $E$ is the unit $(n\times n)$-matrix, $y\in\mathbb R^{2n}$. Under general assumptions, we prove that a vicinity of a singular extremal of order $q$ ($2\le q\le n$) contains $[q/2]$ integral varieties with chattering trajectories. That means that the trajectories enter into the singular extremal at a finite instant with an infinite number of intersections with the surface of discontinuity (Fuller's phenomenon).
@article{FPM_2000_6_2_a1,
author = {V. F. Borisov},
title = {On two-dimensional integral varieties of a~class of discontinuous {Hamiltonian} systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {357--377},
year = {2000},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a1/}
}
V. F. Borisov. On two-dimensional integral varieties of a class of discontinuous Hamiltonian systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 357-377. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a1/