On two-dimensional integral varieties of a~class of discontinuous Hamiltonian systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 357-377
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the following discontinuous Hamiltonian system
\begin{gather*}
\dot y=I\operatorname{grad}H(y),
\\
H(y)=H_0(y)+u H_1(y),\quad
u=\operatorname{sgn}H_1(y),\quad
I=\begin{pmatrix}
0 -E
\\
E 0
\end{pmatrix}.
\end{gather*}
Here $E$ is the unit $(n\times n)$-matrix, $y\in\mathbb R^{2n}$. Under general assumptions, we prove that a vicinity of a singular extremal of order $q$ ($2\le q\le n$) contains $[q/2]$ integral varieties with chattering trajectories. That means that the trajectories enter into the singular extremal at a finite instant with an infinite number of intersections with the surface of discontinuity (Fuller's phenomenon).
@article{FPM_2000_6_2_a1,
author = {V. F. Borisov},
title = {On two-dimensional integral varieties of a~class of discontinuous {Hamiltonian} systems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {357--377},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a1/}
}
TY - JOUR AU - V. F. Borisov TI - On two-dimensional integral varieties of a~class of discontinuous Hamiltonian systems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2000 SP - 357 EP - 377 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a1/ LA - ru ID - FPM_2000_6_2_a1 ER -
V. F. Borisov. On two-dimensional integral varieties of a~class of discontinuous Hamiltonian systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 2, pp. 357-377. http://geodesic.mathdoc.fr/item/FPM_2000_6_2_a1/