Radicals of semiperfect rings related to idempotents
Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 293-298
Voir la notice de l'article provenant de la source Math-Net.Ru
For a semiperfect ring $A$ we prove the existence of the minimal ideal $\mathcal M(A)$ (modular radical) such that the quotient ring $A/\mathcal M(A)$ has the identity element, and of the minimal ideal $\mathcal W(A)$ (Wedderburn radical) such that the quotient ring $A/\mathcal W(A)$ is decomposable into a direct sum of matrix rings over local rings. A simple criterion of such decomposability is given for left Noetherian semiperfect rings and left perfect rings.
@article{FPM_2000_6_1_a24,
author = {V. T. Markov and A. A. Nechaev},
title = {Radicals of semiperfect rings related to idempotents},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {293--298},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a24/}
}
V. T. Markov; A. A. Nechaev. Radicals of semiperfect rings related to idempotents. Fundamentalʹnaâ i prikladnaâ matematika, Tome 6 (2000) no. 1, pp. 293-298. http://geodesic.mathdoc.fr/item/FPM_2000_6_1_a24/