Central polynomials for adjoint representations of simple Lie algebras exist
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1015-1025.

Voir la notice de l'article provenant de la source Math-Net.Ru

Yu. P. Razmyslov has proved that for any finite dimensional reductive Lie algebra $\mathcal G$ over a field $K$ of zero characteristic ($\dim_{K}\mathcal G=m$) and for its arbitrary associative enveloping algebra $U$ with non-empty center $Z(U)$ there exists a central polynomial which is multilinear and skew-symmetric in $k$ sets of $m$ variables for a certain positive integer $k$. This result is now proved for adjoint representations of classical simple Lie algebras of type $A_s,B_s,C_s,D_s$ and matrix Lie algebra $M_n$ over fields of positive characteristic.
@article{FPM_1999_5_4_a4,
     author = {A. A. Kagarmanov and Yu. P. Razmyslov},
     title = {Central polynomials for adjoint representations of simple {Lie} algebras exist},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1015--1025},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a4/}
}
TY  - JOUR
AU  - A. A. Kagarmanov
AU  - Yu. P. Razmyslov
TI  - Central polynomials for adjoint representations of simple Lie algebras exist
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 1015
EP  - 1025
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a4/
LA  - ru
ID  - FPM_1999_5_4_a4
ER  - 
%0 Journal Article
%A A. A. Kagarmanov
%A Yu. P. Razmyslov
%T Central polynomials for adjoint representations of simple Lie algebras exist
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 1015-1025
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a4/
%G ru
%F FPM_1999_5_4_a4
A. A. Kagarmanov; Yu. P. Razmyslov. Central polynomials for adjoint representations of simple Lie algebras exist. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 4, pp. 1015-1025. http://geodesic.mathdoc.fr/item/FPM_1999_5_4_a4/