Symplectic groups over Laurent polynomial rings and patching diagrams
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 943-945.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we prove the following result. Let $A$ be a P.I.D. such that $\operatorname{K}_1\operatorname{Sp}(A)=0$. Then the groups $\operatorname{Sp}_{2r}(A[X_1^{\pm1},\ldots,X_n^{\pm1},Y_1,\ldots,Y_m])$ are generated by elementary symplectic matrices for all integers $r\geq2$.
@article{FPM_1999_5_3_a22,
     author = {V. I. Kopeiko},
     title = {Symplectic groups over {Laurent} polynomial rings and patching diagrams},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {943--945},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a22/}
}
TY  - JOUR
AU  - V. I. Kopeiko
TI  - Symplectic groups over Laurent polynomial rings and patching diagrams
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 943
EP  - 945
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a22/
LA  - ru
ID  - FPM_1999_5_3_a22
ER  - 
%0 Journal Article
%A V. I. Kopeiko
%T Symplectic groups over Laurent polynomial rings and patching diagrams
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 943-945
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a22/
%G ru
%F FPM_1999_5_3_a22
V. I. Kopeiko. Symplectic groups over Laurent polynomial rings and patching diagrams. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 3, pp. 943-945. http://geodesic.mathdoc.fr/item/FPM_1999_5_3_a22/