On the~existence of invariant subspaces of dissipative operators in space with indefinite metric
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 627-635
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal H$ be Hilbert space with fundamental symmetry $J=P_+-P_-$, where $P_\pm$ are mutualy orthogonal projectors such that $J^2$ is identity operator. The main result of the paper is the following: if $A$ is a maximal dissipative operator in the Krein space $\mathcal K=\{\mathcal H,J\}$, the domain of $A$ contains $P_+(\mathcal H)$, and the operator $P_+AP_-$ is compact, then there exists an $A$-invariant maximal non-negative subspace $\mathcal L$ such that the spectrum of the restriction $A|_{\mathcal L}$ lies in the closed upper-half complex plain. This theorem is a modification of well-known results of L. S. Pontrjagin, H. Langer, M. G. Krein and T. Ja. Azizov. A new proof is proposed in this paper.
@article{FPM_1999_5_2_a16,
author = {A. A. Shkalikov},
title = {On the~existence of invariant subspaces of dissipative operators in space with indefinite metric},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {627--635},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/}
}
TY - JOUR AU - A. A. Shkalikov TI - On the~existence of invariant subspaces of dissipative operators in space with indefinite metric JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 627 EP - 635 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/ LA - ru ID - FPM_1999_5_2_a16 ER -
A. A. Shkalikov. On the~existence of invariant subspaces of dissipative operators in space with indefinite metric. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 627-635. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/