On the~existence of invariant subspaces of dissipative operators in space with indefinite metric
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 627-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal H$ be Hilbert space with fundamental symmetry $J=P_+-P_-$, where $P_\pm$ are mutualy orthogonal projectors such that $J^2$ is identity operator. The main result of the paper is the following: if $A$ is a maximal dissipative operator in the Krein space $\mathcal K=\{\mathcal H,J\}$, the domain of $A$ contains $P_+(\mathcal H)$, and the operator $P_+AP_-$ is compact, then there exists an $A$-invariant maximal non-negative subspace $\mathcal L$ such that the spectrum of the restriction $A|_{\mathcal L}$ lies in the closed upper-half complex plain. This theorem is a modification of well-known results of L. S. Pontrjagin, H. Langer, M. G. Krein and T. Ja. Azizov. A new proof is proposed in this paper.
@article{FPM_1999_5_2_a16,
     author = {A. A. Shkalikov},
     title = {On the~existence of invariant subspaces of dissipative operators in space with indefinite metric},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {627--635},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - On the~existence of invariant subspaces of dissipative operators in space with indefinite metric
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 627
EP  - 635
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/
LA  - ru
ID  - FPM_1999_5_2_a16
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T On the~existence of invariant subspaces of dissipative operators in space with indefinite metric
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 627-635
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/
%G ru
%F FPM_1999_5_2_a16
A. A. Shkalikov. On the~existence of invariant subspaces of dissipative operators in space with indefinite metric. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 2, pp. 627-635. http://geodesic.mathdoc.fr/item/FPM_1999_5_2_a16/