On non-Spechtian varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 47-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to construction of infinitely based series of identities. Such counterexamples in Specht problem are built in any positive characteristics. The main result is the following: Theorem. Let $F$ be any field of characteristic $p$, $q=p^s$, $s>1$. Then the polynomials $R_n$: $$ R_n=[[E,T],T]\prod_{i=1}^n Q(x_i,y_i) ([T,[T,F]][[E,T],T])^{q-1}[T,[T,F]], $$ where $Q(x,y)=x^{p-1}y^{p-1}[x,y]$, generate an infinitely based variety.
@article{FPM_1999_5_1_a2,
     author = {A. Ya. Belov},
     title = {On {non-Spechtian} varieties},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {47--66},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - On non-Spechtian varieties
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 47
EP  - 66
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/
LA  - ru
ID  - FPM_1999_5_1_a2
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T On non-Spechtian varieties
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 47-66
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/
%G ru
%F FPM_1999_5_1_a2
A. Ya. Belov. On non-Spechtian varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 47-66. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/