On non-Spechtian varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 47-66
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to construction of infinitely based series of identities. Such counterexamples in Specht problem are built in any positive characteristics. The main result is the following: Theorem. Let $F$ be any field of characteristic $p$, $q=p^s$, $s>1$. Then the polynomials $R_n$: $$ R_n=[[E,T],T]\prod_{i=1}^n Q(x_i,y_i) ([T,[T,F]][[E,T],T])^{q-1}[T,[T,F]], $$ where $Q(x,y)=x^{p-1}y^{p-1}[x,y]$, generate an infinitely based variety.
@article{FPM_1999_5_1_a2,
     author = {A. Ya. Belov},
     title = {On {non-Spechtian} varieties},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {47--66},
     year = {1999},
     volume = {5},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - On non-Spechtian varieties
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1999
SP  - 47
EP  - 66
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/
LA  - ru
ID  - FPM_1999_5_1_a2
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T On non-Spechtian varieties
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1999
%P 47-66
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/
%G ru
%F FPM_1999_5_1_a2
A. Ya. Belov. On non-Spechtian varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 47-66. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/