On non-Spechtian varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 47-66
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to construction of infinitely based series of identities. Such counterexamples in Specht problem are built in any positive characteristics. The main result is the following:
Theorem. Let $F$ be any field of characteristic $p$, $q=p^s$, $s>1$. Then the polynomials $R_n$:
$$
R_n=[[E,T],T]\prod_{i=1}^n Q(x_i,y_i) ([T,[T,F]][[E,T],T])^{q-1}[T,[T,F]],
$$
where $Q(x,y)=x^{p-1}y^{p-1}[x,y]$, generate an infinitely based variety.
@article{FPM_1999_5_1_a2,
author = {A. Ya. Belov},
title = {On {non-Spechtian} varieties},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {47--66},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/}
}
A. Ya. Belov. On non-Spechtian varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 47-66. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a2/