On~arithmetic complexity of the~predicate logics of complete constructive arithmetic theories
Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 221-255
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved in this paper that the predicate logic of each complete constructive arithmetic theory $T$ having the existence property is $\Pi_1^T$-complete. In this connection the techniques of uniform partial truth definition for intuitionistic arithmetic theories is used. The main theorem is applied to the characterization of the predicate logic corresponding to certain variant of the notion of realizable predicate formula. Namely it is shown that the set of undisprovable predicate formulas is recursively isomorphic to the complement of the set $\emptyset^{(\omega +1)}$.
@article{FPM_1999_5_1_a12,
author = {V. E. Plisko},
title = {On~arithmetic complexity of the~predicate logics of complete constructive arithmetic theories},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {221--255},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a12/}
}
TY - JOUR AU - V. E. Plisko TI - On~arithmetic complexity of the~predicate logics of complete constructive arithmetic theories JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1999 SP - 221 EP - 255 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a12/ LA - ru ID - FPM_1999_5_1_a12 ER -
V. E. Plisko. On~arithmetic complexity of the~predicate logics of complete constructive arithmetic theories. Fundamentalʹnaâ i prikladnaâ matematika, Tome 5 (1999) no. 1, pp. 221-255. http://geodesic.mathdoc.fr/item/FPM_1999_5_1_a12/