Separable torsion free Abelian groups with $UA$-rings of endomorphisms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1419-1422
Voir la notice de l'article provenant de la source Math-Net.Ru
A semigroup $(R,\cdot)$ is said to be a unique addition ring ($UA$-ring) if there exists a unique binary operation $+$, making $(R,\cdot,+)$ into a ring. We call an abelian group $\operatorname{End}$-$UA$-group if its endomorphism ring is $UA$-ring. As a result we have obtained a characterization of separable tortion free $\operatorname{End}$-$UA$-groups.
@article{FPM_1998_4_4_a17,
author = {O. V. Ljubimtsev},
title = {Separable torsion free {Abelian} groups with $UA$-rings of endomorphisms},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1419--1422},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a17/}
}
O. V. Ljubimtsev. Separable torsion free Abelian groups with $UA$-rings of endomorphisms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1419-1422. http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a17/