Separable torsion free Abelian groups with $UA$-rings of endomorphisms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1419-1422.

Voir la notice de l'article provenant de la source Math-Net.Ru

A semigroup $(R,\cdot)$ is said to be a unique addition ring ($UA$-ring) if there exists a unique binary operation $+$, making $(R,\cdot,+)$ into a ring. We call an abelian group $\operatorname{End}$-$UA$-group if its endomorphism ring is $UA$-ring. As a result we have obtained a characterization of separable tortion free $\operatorname{End}$-$UA$-groups.
@article{FPM_1998_4_4_a17,
     author = {O. V. Ljubimtsev},
     title = {Separable torsion free {Abelian} groups with $UA$-rings of endomorphisms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1419--1422},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a17/}
}
TY  - JOUR
AU  - O. V. Ljubimtsev
TI  - Separable torsion free Abelian groups with $UA$-rings of endomorphisms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 1419
EP  - 1422
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a17/
LA  - ru
ID  - FPM_1998_4_4_a17
ER  - 
%0 Journal Article
%A O. V. Ljubimtsev
%T Separable torsion free Abelian groups with $UA$-rings of endomorphisms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 1419-1422
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a17/
%G ru
%F FPM_1998_4_4_a17
O. V. Ljubimtsev. Separable torsion free Abelian groups with $UA$-rings of endomorphisms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1419-1422. http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a17/