On the~asymptotics of the~fundamental solution of a~high order parabolic equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 3, pp. 1009-1027
Voir la notice de l'article provenant de la source Math-Net.Ru
The behavior as $t\to\infty$ of the fundamental solution $G(x,s,t)$ of the Cauchy problem for the equation $u_t=(-1)^nu^{2n}_x+a(x)u$, $x\in\mathbb R^1$, $t>0$, $n>1$ is studied. It is assumed that the coefficient $a(x)\in C^{\infty}(\mathbb R^1)$ and as $x\to\infty$ expand into asymptotic series of the form
$$
a(x)=\sum_{j=0}^{\infty}
a_{2n+j}^{\pm}x^{-2n-j}, \quad x\to\pm\infty.
$$
The asymptotic expansion of the $G(x,s,t)$ as $t\to\infty$ is constructed and establiched for all $x,s\in\mathbb R^1$. The fundamental solution decays like power, and the decay rate is determined by the quantities of “principal” coefficients $a_{2n}^{\pm}$.
@article{FPM_1998_4_3_a9,
author = {E. F. Lelikova},
title = {On the~asymptotics of the~fundamental solution of a~high order parabolic equation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1009--1027},
publisher = {mathdoc},
volume = {4},
number = {3},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/}
}
TY - JOUR AU - E. F. Lelikova TI - On the~asymptotics of the~fundamental solution of a~high order parabolic equation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 1009 EP - 1027 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/ LA - ru ID - FPM_1998_4_3_a9 ER -
E. F. Lelikova. On the~asymptotics of the~fundamental solution of a~high order parabolic equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 3, pp. 1009-1027. http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/