On the~asymptotics of the~fundamental solution of a~high order parabolic equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 3, pp. 1009-1027.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior as $t\to\infty$ of the fundamental solution $G(x,s,t)$ of the Cauchy problem for the equation $u_t=(-1)^nu^{2n}_x+a(x)u$, $x\in\mathbb R^1$, $t>0$, $n>1$ is studied. It is assumed that the coefficient $a(x)\in C^{\infty}(\mathbb R^1)$ and as $x\to\infty$ expand into asymptotic series of the form $$ a(x)=\sum_{j=0}^{\infty} a_{2n+j}^{\pm}x^{-2n-j}, \quad x\to\pm\infty. $$ The asymptotic expansion of the $G(x,s,t)$ as $t\to\infty$ is constructed and establiched for all $x,s\in\mathbb R^1$. The fundamental solution decays like power, and the decay rate is determined by the quantities of “principal” coefficients $a_{2n}^{\pm}$.
@article{FPM_1998_4_3_a9,
     author = {E. F. Lelikova},
     title = {On the~asymptotics of the~fundamental solution of a~high order parabolic equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1009--1027},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - On the~asymptotics of the~fundamental solution of a~high order parabolic equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 1009
EP  - 1027
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/
LA  - ru
ID  - FPM_1998_4_3_a9
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T On the~asymptotics of the~fundamental solution of a~high order parabolic equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 1009-1027
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/
%G ru
%F FPM_1998_4_3_a9
E. F. Lelikova. On the~asymptotics of the~fundamental solution of a~high order parabolic equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 3, pp. 1009-1027. http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a9/