Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm--Liouville
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 535-541.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorem of existence and uniqueness of operator on mixture of eigevalues of two boundary problems (Dirichlet, Neyman) is proved.
@article{FPM_1998_4_2_a4,
     author = {V. V. Dubrovskii and A. S. Velikikh},
     title = {{\CYRT}he theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of {Sturm--Liouville}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {535--541},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/}
}
TY  - JOUR
AU  - V. V. Dubrovskii
AU  - A. S. Velikikh
TI  - Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm--Liouville
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 535
EP  - 541
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/
LA  - ru
ID  - FPM_1998_4_2_a4
ER  - 
%0 Journal Article
%A V. V. Dubrovskii
%A A. S. Velikikh
%T Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm--Liouville
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 535-541
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/
%G ru
%F FPM_1998_4_2_a4
V. V. Dubrovskii; A. S. Velikikh. Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm--Liouville. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 535-541. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/