Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm–Liouville
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 535-541
Theorem of existence and uniqueness of operator on mixture of eigevalues of two boundary problems (Dirichlet, Neyman) is proved.
@article{FPM_1998_4_2_a4,
author = {V. V. Dubrovskii and A. S. Velikikh},
title = {{\CYRT}he theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of {Sturm{\textendash}Liouville}},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {535--541},
year = {1998},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/}
}
TY - JOUR AU - V. V. Dubrovskii AU - A. S. Velikikh TI - Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm–Liouville JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 535 EP - 541 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/ LA - ru ID - FPM_1998_4_2_a4 ER -
%0 Journal Article %A V. V. Dubrovskii %A A. S. Velikikh %T Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm–Liouville %J Fundamentalʹnaâ i prikladnaâ matematika %D 1998 %P 535-541 %V 4 %N 2 %U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/ %G ru %F FPM_1998_4_2_a4
V. V. Dubrovskii; A. S. Velikikh. Тhe theorem of restoration simmetrical potential in the reverse problem of spectral analysis for operator of Sturm–Liouville. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 535-541. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a4/