Normal surfaces whose anticanonical divisor is numerically positive
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 757-761
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a normal projective surface and anticanonical divisor $-K_{X}$ is numerically positive. Then $-K_{X}$ is numerically ample and rationality of $X$ is equivalent to its $\mathbb Q$-factoriality.
@article{FPM_1998_4_2_a20,
author = {M. M. Grinenko},
title = {Normal surfaces whose anticanonical divisor is numerically positive},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {757--761},
year = {1998},
volume = {4},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a20/}
}
M. M. Grinenko. Normal surfaces whose anticanonical divisor is numerically positive. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 757-761. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a20/