Normal surfaces whose anticanonical divisor is numerically positive
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 757-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a normal projective surface and anticanonical divisor $-K_{X}$ is numerically positive. Then $-K_{X}$ is numerically ample and rationality of $X$ is equivalent to its $\mathbb Q$-factoriality.
@article{FPM_1998_4_2_a20,
     author = {M. M. Grinenko},
     title = {Normal surfaces whose anticanonical divisor is numerically positive},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {757--761},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a20/}
}
TY  - JOUR
AU  - M. M. Grinenko
TI  - Normal surfaces whose anticanonical divisor is numerically positive
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 757
EP  - 761
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a20/
LA  - ru
ID  - FPM_1998_4_2_a20
ER  - 
%0 Journal Article
%A M. M. Grinenko
%T Normal surfaces whose anticanonical divisor is numerically positive
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 757-761
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a20/
%G ru
%F FPM_1998_4_2_a20
M. M. Grinenko. Normal surfaces whose anticanonical divisor is numerically positive. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 757-761. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a20/