On systems of polynomially solvable linear equations with $k$-valued variables
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 511-523
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of polynomially solvable systems of $m$ linear equations of $n$ $k$-valued variables is described. The exact and asymptotic formulae for the cardinal number $\nu_k(n,m)$ of the class are presented. In particular, if $n,m\to\infty$ so that $m/n=(1-1/k)+\omega n^{-1/2}$, where $\omega\to+\infty$ almost all of such systems with columns in general position are polynomially solvable.
@article{FPM_1998_4_2_a2,
author = {A. N. Veligura},
title = {On systems of polynomially solvable linear equations with $k$-valued variables},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {511--523},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a2/}
}
TY - JOUR AU - A. N. Veligura TI - On systems of polynomially solvable linear equations with $k$-valued variables JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 511 EP - 523 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a2/ LA - ru ID - FPM_1998_4_2_a2 ER -
A. N. Veligura. On systems of polynomially solvable linear equations with $k$-valued variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 511-523. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a2/