On inverse problem for an~ordinary differential equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 709-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem for an ordinary linear differential equation of the n-th order consists in constructing approximation to the right side of the equation given an approximate solution of the boundary problem of general form. This problem is being reduced to the problem of constructing uniform approximations of a function together with its derivatives up to the $n$-th order from the domain of definition of an arbitrary differential operator. The error of an approximate solution is estimated.
@article{FPM_1998_4_2_a15,
     author = {G. V. Khromova},
     title = {On inverse problem for an~ordinary differential equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {709--716},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a15/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - On inverse problem for an~ordinary differential equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 709
EP  - 716
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a15/
LA  - ru
ID  - FPM_1998_4_2_a15
ER  - 
%0 Journal Article
%A G. V. Khromova
%T On inverse problem for an~ordinary differential equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 709-716
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a15/
%G ru
%F FPM_1998_4_2_a15
G. V. Khromova. On inverse problem for an~ordinary differential equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 709-716. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a15/