On a~generalization of the convex addition
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 641-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an operation of generalized addition of convex bodies ($p$-addition, $p\in[1,+\infty]$), converting the class of bounded symmetrical convex subsets of a normed linear space into an Abelian subgroup with a natural action of positive scalars on it. We investigate properties of this operation and mention its applications to the problem of computing of the joint spectral radius of linear operators. We prove that $p$-addition is the unique associative operation among some natural class of binary operations on the set of symmetrical convex bodies.
@article{FPM_1998_4_2_a10,
     author = {V. Yu. Protasov},
     title = {On a~generalization of the convex addition},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {641--650},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a10/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - On a~generalization of the convex addition
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 641
EP  - 650
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a10/
LA  - ru
ID  - FPM_1998_4_2_a10
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T On a~generalization of the convex addition
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 641-650
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a10/
%G ru
%F FPM_1998_4_2_a10
V. Yu. Protasov. On a~generalization of the convex addition. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 641-650. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a10/