On $\varkappa$-closed images of subsets of topological products
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 127-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a first countable $\varkappa$-closed image of a $G_\delta$-dense subset of the product of metric spaces is metrizable. It is also proved that the subset of points the internal of which prototype is not empty is a $\sigma$-discreet set in the $\varkappa$-closed image of some subsets of the Tychonoff product of spaces with $\sigma$-discreet $\pi$-base, and the boundary of a prototype of a $q$-point of image is relatively pseudocompact, if the image is a $\varkappa$-closed image of some subsets of topological product of Dieudonne complete spaces.
@article{FPM_1998_4_1_a9,
     author = {K. L. Kozlov},
     title = {On $\varkappa$-closed images of subsets of topological products},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a9/}
}
TY  - JOUR
AU  - K. L. Kozlov
TI  - On $\varkappa$-closed images of subsets of topological products
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 127
EP  - 134
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a9/
LA  - ru
ID  - FPM_1998_4_1_a9
ER  - 
%0 Journal Article
%A K. L. Kozlov
%T On $\varkappa$-closed images of subsets of topological products
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 127-134
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a9/
%G ru
%F FPM_1998_4_1_a9
K. L. Kozlov. On $\varkappa$-closed images of subsets of topological products. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a9/