An~estimate of the minimum of the absolute value of trigonometric polynomials with random coefficients
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 245-302
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the random trigonometric polynomial $T(x)=\sum\limits_{j=0}^{n-1}\xi_j\exp (ijx)$ is studied, where $\xi,\xi_j$ are real independent equally distributed random variables with zero mathematical expectations, positive second and finite third absolute moments.
Theorem.
For any $\varepsilon\in(0,1)$ and $n>(C(\xi))^{7654/\varepsilon^3}$
$$
\mathsf{Pr}\biggl(\min_{x\in\mathbb T}\biggl|\sum_{j=0}^{n-1}\xi_j\exp(ijx)
\biggr|>n^{-\frac{1}{2}+\varepsilon}\biggr)\leq
\frac{1}{n^{\varepsilon^2/62}},
$$
where $C(\xi)$ is defined in the paper.
In the proof of the theorem we use the method of normal degree and establish the estimates for probabilities of events $E_k$, $k\in\mathbb N$, $0$, and their pairwise intersections. The events $E_k$ are defined by random vectors $X$:
$$
X=(\operatorname{Re}T(x_k),\ldots,\operatorname{Re}(T^{(r-1)}(x_k)/(in)^{r-1}),
\operatorname{Im}T(x_k),\ldots,\operatorname{Im}(T^{(r-1)}(x_k)/(in)^{r-1})),
$$
where $r$ is chosen as a natural number, such that $\frac{10}{\varepsilon}$ for given $\varepsilon$ and $x_k=\frac{2\pi k}{k_0}$, where $k_0$ is the greatest prime number, not greater then $n^{1-\frac{\varepsilon}{20}}$. To find these estimates first of all we obtain inequalities for polynomials and by these inequalities we establish the properties of characteristic functions of random vectors $X$ and their pairwise unions.
@article{FPM_1998_4_1_a19,
author = {A. G. Karapetyan},
title = {An~estimate of the minimum of the absolute value of trigonometric polynomials with random coefficients},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {245--302},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a19/}
}
TY - JOUR AU - A. G. Karapetyan TI - An~estimate of the minimum of the absolute value of trigonometric polynomials with random coefficients JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 245 EP - 302 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a19/ LA - ru ID - FPM_1998_4_1_a19 ER -
%0 Journal Article %A A. G. Karapetyan %T An~estimate of the minimum of the absolute value of trigonometric polynomials with random coefficients %J Fundamentalʹnaâ i prikladnaâ matematika %D 1998 %P 245-302 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a19/ %G ru %F FPM_1998_4_1_a19
A. G. Karapetyan. An~estimate of the minimum of the absolute value of trigonometric polynomials with random coefficients. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 245-302. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a19/