Weak normality of~$2^{X}$ and of~$X^{\tau}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 135-140
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a weak normality of a space of closed subsets of a countably compact space $X$ implies that $X$ is compact. The example shows that the countable compactness of $X$ is essential. It is also proved that a weak normality of a sufficiently large power of $X$ implies that $X$ is compact.
@article{FPM_1998_4_1_a10,
author = {A. P. Kombarov},
title = {Weak normality of~$2^{X}$ and of~$X^{\tau}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {135--140},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a10/}
}
A. P. Kombarov. Weak normality of~$2^{X}$ and of~$X^{\tau}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a10/