Weak normality of~$2^{X}$ and of~$X^{\tau}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 135-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a weak normality of a space of closed subsets of a countably compact space $X$ implies that $X$ is compact. The example shows that the countable compactness of $X$ is essential. It is also proved that a weak normality of a sufficiently large power of $X$ implies that $X$ is compact.
@article{FPM_1998_4_1_a10,
     author = {A. P. Kombarov},
     title = {Weak normality of~$2^{X}$ and of~$X^{\tau}$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a10/}
}
TY  - JOUR
AU  - A. P. Kombarov
TI  - Weak normality of~$2^{X}$ and of~$X^{\tau}$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 135
EP  - 140
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a10/
LA  - ru
ID  - FPM_1998_4_1_a10
ER  - 
%0 Journal Article
%A A. P. Kombarov
%T Weak normality of~$2^{X}$ and of~$X^{\tau}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 135-140
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a10/
%G ru
%F FPM_1998_4_1_a10
A. P. Kombarov. Weak normality of~$2^{X}$ and of~$X^{\tau}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a10/