On the groups in which the subgroups with fixed number of generators are free
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 675-683.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove here that, in a definite statistical meaning, in almost every group with $m$ generators and $n$ relations (we suppose $m$ and $n$ to be fixed) all $\le L$-generated subgroups of infinite index are free ($L$ is an arbitrary preassigned bound, possibly $L\gg m$) and all subgroups of finite index are not free. To prove this fact we found the condition on relations which guarantee that all subgroups of infinite index with fixed number of generators in a finitely presented group are free. This condition is formulated by means of the finite marked graphs.
@article{FPM_1997_3_3_a2,
     author = {G. N. Arzhantseva},
     title = {On the groups in which the subgroups with fixed number of generators are free},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {675--683},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a2/}
}
TY  - JOUR
AU  - G. N. Arzhantseva
TI  - On the groups in which the subgroups with fixed number of generators are free
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 675
EP  - 683
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a2/
LA  - ru
ID  - FPM_1997_3_3_a2
ER  - 
%0 Journal Article
%A G. N. Arzhantseva
%T On the groups in which the subgroups with fixed number of generators are free
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 675-683
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a2/
%G ru
%F FPM_1997_3_3_a2
G. N. Arzhantseva. On the groups in which the subgroups with fixed number of generators are free. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 675-683. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a2/