Approximation of $k$-ary functions by functions from the given system
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 653-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems of $k$-ary functions approximation by functions from the given system are investigated in this paper. In particular, generalization of Golomb theorem [1] is obtained in the case of ring $\mathbb{Z}/k$ or finite field $GF(q)$. The definition of $k$-ary functions equivalency with respect to the given functions system is introduced. Classes of equivalency with respect to the linear functions system over finite field or ring $\mathbb{Z}/4$ are described. Limit theorems on cardinality of random $k$-ary functions equivalency class are proved. Also in this paper we found functions which minimize maximum probability of coincidence with linear functions in one variable over finite ring with identity.
@article{FPM_1997_3_3_a1,
     author = {A. S. Ambrosimov},
     title = {Approximation of $k$-ary functions by functions from the given system},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {653--674},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a1/}
}
TY  - JOUR
AU  - A. S. Ambrosimov
TI  - Approximation of $k$-ary functions by functions from the given system
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 653
EP  - 674
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a1/
LA  - ru
ID  - FPM_1997_3_3_a1
ER  - 
%0 Journal Article
%A A. S. Ambrosimov
%T Approximation of $k$-ary functions by functions from the given system
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 653-674
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a1/
%G ru
%F FPM_1997_3_3_a1
A. S. Ambrosimov. Approximation of $k$-ary functions by functions from the given system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 653-674. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a1/