Application of the $A^{\land}$-integration for Fourier transforms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 351-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved Theorem. Let the function $f(x)$ be a boundary variation on $\mathbb R$ and $f(x)\to0$ ($x\to\pm\infty$). Then its Fourier transform $$ \widehat f(\lambda)=(L^{\land})\int\limits_{-\infty}^{+\infty}f(t)e^{-2\pi i\lambda t}dt $$ exists in case of $\lambda\ne0$ and $f(x)$ recovers by its Fourier transforms by mean of the $A^{\land}$-integral. Further for all $x\in\tilde{A}$, where $f(x)=\dfrac12(f(x+0)+f(x-0))$ (for all $x$, except countable subset) the following holds $$ f(x)=(A^{\land})\int\limits_{-\infty}^{+\infty}\widehat f(\lambda)e^{2\pi i\lambda x}d\lambda. $$
@article{FPM_1997_3_2_a1,
     author = {Anter Ali Alsayad},
     title = {Application of the $A^{\land}$-integration for {Fourier} transforms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {351--357},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a1/}
}
TY  - JOUR
AU  - Anter Ali Alsayad
TI  - Application of the $A^{\land}$-integration for Fourier transforms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 351
EP  - 357
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a1/
LA  - ru
ID  - FPM_1997_3_2_a1
ER  - 
%0 Journal Article
%A Anter Ali Alsayad
%T Application of the $A^{\land}$-integration for Fourier transforms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 351-357
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a1/
%G ru
%F FPM_1997_3_2_a1
Anter Ali Alsayad. Application of the $A^{\land}$-integration for Fourier transforms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 351-357. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a1/