Application of the $A^{\land}$-integration for Fourier transforms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 351-357
Voir la notice de l'article provenant de la source Math-Net.Ru
The following theorem is proved
Theorem.
Let the function $f(x)$ be a boundary variation on $\mathbb R$ and $f(x)\to0$ ($x\to\pm\infty$). Then its Fourier transform
$$
\widehat f(\lambda)=(L^{\land})\int\limits_{-\infty}^{+\infty}f(t)e^{-2\pi i\lambda t}dt
$$
exists in case of $\lambda\ne0$ and $f(x)$ recovers by its Fourier transforms by mean of the $A^{\land}$-integral. Further for all $x\in\tilde{A}$, where $f(x)=\dfrac12(f(x+0)+f(x-0))$ (for all $x$, except countable subset) the following holds
$$
f(x)=(A^{\land})\int\limits_{-\infty}^{+\infty}\widehat f(\lambda)e^{2\pi i\lambda x}d\lambda.
$$
@article{FPM_1997_3_2_a1,
author = {Anter Ali Alsayad},
title = {Application of the $A^{\land}$-integration for {Fourier} transforms},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {351--357},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a1/}
}
Anter Ali Alsayad. Application of the $A^{\land}$-integration for Fourier transforms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 351-357. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a1/