Polynomial continuity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mapping $f\colon\,X\to Y$ between Banach spaces $X$ and $Y$ is said to be polynomially continuous ($P$-continuous, for short) if its restriction to any bounded set is uniformly continuous for the weak polynomial topology, i.e., for every $\varepsilon>0$ and bounded $B\subset X$, there are a finite set $\{p_1,\ldots,p_n\}$ of polynomials on $X$ and $\delta>0$ so that $\|f(x)-f(y)\|\varepsilon$ whenever $x,y\in B$ satisfy $|p_j(x-y)|\delta$ $(1\leq j\leq n)$. Every compact (linear) operator is $P$-continuous. The spaces $L^\infty [0,1]$, $L^1[0,1]$ and $C[0,1]$, for example, admit polynomials which are not $P$-continuous. We prove that every $P$-continuous operator is weakly compact and that for every $k\in\mathbb N$ $(k\geq2)$ there is a $k$-homogeneous scalar valued polynomial on $\ell_1$ which is not $P$-continuous. We also characterize the spaces for which uniform continuity and $P$-continuity coincide, as those spaces admitting a separating polynomial. Other properties of $P$-continuous polynomials are investigated.
@article{FPM_1997_3_1_a2,
     author = {J. Llavona},
     title = {Polynomial continuity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {37--45},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a2/}
}
TY  - JOUR
AU  - J. Llavona
TI  - Polynomial continuity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 37
EP  - 45
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a2/
LA  - ru
ID  - FPM_1997_3_1_a2
ER  - 
%0 Journal Article
%A J. Llavona
%T Polynomial continuity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 37-45
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a2/
%G ru
%F FPM_1997_3_1_a2
J. Llavona. Polynomial continuity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a2/