Additive problems with numbers having a given number of prime dividers from progressions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 163-170
Voir la notice de l'article provenant de la source Math-Net.Ru
We have found the number of the representations of a number $N$ as
$$
n=mr\quadand\quad n+m^2+r^2,
$$
where $m,r$ — natural numbers and $n$ are the numbers having $k$ prime dividers such that
$p_i\equiv l_i\, (\bmod\ d_0)$, $p_i\geq t> \ln^{B+1}N$, $(l_i,d_0)=1$, $i=1,2,\ldots,k$, $(N-l_1\ldots l_k,d_0)=1$. The paper also contains the results about distribution of such numbers $n$ in arithmetic progressions with large modulus.
@article{FPM_1997_3_1_a13,
author = {A. A. Zhukova},
title = {Additive problems with numbers having a given number of prime dividers from progressions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {163--170},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a13/}
}
TY - JOUR AU - A. A. Zhukova TI - Additive problems with numbers having a given number of prime dividers from progressions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 163 EP - 170 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a13/ LA - ru ID - FPM_1997_3_1_a13 ER -
A. A. Zhukova. Additive problems with numbers having a given number of prime dividers from progressions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 163-170. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a13/