Asymptotic of maxima in the infinite server queue with bounded batch sizes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1107-1115.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the infinite server queue with the batch input $M^X|G|\infty$. Let all servers be free at time zero and $M(t)$ denote the maximum number of customers simultaneously present in the queue during $[0,t]$. The following theorem is proved. Theorem 1. If $L$ is the maximum number of customers in a batch, then almost sure $$ M(t)\frac{\ln\ln t}{\ln t}\to L\quadas $t\to\infty$.\eqno (*) $$ Some generalizations are discussed: nonstationary queues (with time-dependent parameters) and queues with heterogeneous customers. For these monotony theorems are proved. Conditions under which the asymptotic $(*)$ stays correct are obtained.
@article{FPM_1996_2_4_a9,
     author = {A. V. Lebedev},
     title = {Asymptotic of maxima in the infinite server queue with bounded batch sizes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1107--1115},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a9/}
}
TY  - JOUR
AU  - A. V. Lebedev
TI  - Asymptotic of maxima in the infinite server queue with bounded batch sizes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1107
EP  - 1115
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a9/
LA  - ru
ID  - FPM_1996_2_4_a9
ER  - 
%0 Journal Article
%A A. V. Lebedev
%T Asymptotic of maxima in the infinite server queue with bounded batch sizes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1107-1115
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a9/
%G ru
%F FPM_1996_2_4_a9
A. V. Lebedev. Asymptotic of maxima in the infinite server queue with bounded batch sizes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1107-1115. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a9/