On Lie automorphisms of simple rings of characteristic~2
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1257-1268
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R,R'$ be prime rings of characteristic 2 such that one of them is not GPI. Then any Lie isomorphism $\phi\colon\,R\to R'$ is of the form $\sigma+\tau$, where $\sigma$ is an isomorphism or an antiisomorphism of $R$ into the central closure of $R'$ and $\tau$ is an additive mapping of $R$ into the extended centroid of $R'$. Analogous result holds for Lie automorphisms of matrice ring $R=M_n(F)$, $n\geq3$, where $F$ is algebraic closure of field.
@article{FPM_1996_2_4_a21,
author = {M. A. Chebotar},
title = {On {Lie} automorphisms of simple rings of characteristic~2},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1257--1268},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a21/}
}
M. A. Chebotar. On Lie automorphisms of simple rings of characteristic~2. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1257-1268. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a21/