On Lie automorphisms of simple rings of characteristic~2
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1257-1268.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R,R'$ be prime rings of characteristic 2 such that one of them is not GPI. Then any Lie isomorphism $\phi\colon\,R\to R'$ is of the form $\sigma+\tau$, where $\sigma$ is an isomorphism or an antiisomorphism of $R$ into the central closure of $R'$ and $\tau$ is an additive mapping of $R$ into the extended centroid of $R'$. Analogous result holds for Lie automorphisms of matrice ring $R=M_n(F)$, $n\geq3$, where $F$ is algebraic closure of field.
@article{FPM_1996_2_4_a21,
     author = {M. A. Chebotar},
     title = {On {Lie} automorphisms of simple rings of characteristic~2},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1257--1268},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a21/}
}
TY  - JOUR
AU  - M. A. Chebotar
TI  - On Lie automorphisms of simple rings of characteristic~2
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1257
EP  - 1268
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a21/
LA  - ru
ID  - FPM_1996_2_4_a21
ER  - 
%0 Journal Article
%A M. A. Chebotar
%T On Lie automorphisms of simple rings of characteristic~2
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1257-1268
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a21/
%G ru
%F FPM_1996_2_4_a21
M. A. Chebotar. On Lie automorphisms of simple rings of characteristic~2. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1257-1268. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a21/