Harmonic solution for the inverse problem of the Newtonian potential theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1195-1204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study from a theoretical point of view the Backus and Gilbert method in the case of Newtonian potential. If a mass distribution $m$ on a open set $\Omega$ creates a Newtonian potential $U^m$, which is known on an infinity of points $(y_n)_{n\in\mathbb N}$ out of $\overline{\Omega}$, we characterize the solution $m_0$, obtained as a generalization of the Backus and Gilbert method, as the projection of $m$ (for the scalar product of $L_2(\Omega)$) on a subspace of harmonic functions; this subspace may be the subspace of all harmonic, square-integrable functions (for example, if $\Omega$ is a starlike domain). Then we study the reproducing kernel $B$ associated to this projection, which satisfies $$ m_0(x)=\int\limits_{\Omega}B(x,y)m(y)\,dy $$ for any $m\in L_2(\Omega)$.
@article{FPM_1996_2_4_a15,
     author = {J. Bosgiraud},
     title = {Harmonic solution for the inverse problem of the {Newtonian} potential theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1195--1204},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a15/}
}
TY  - JOUR
AU  - J. Bosgiraud
TI  - Harmonic solution for the inverse problem of the Newtonian potential theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1195
EP  - 1204
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a15/
LA  - ru
ID  - FPM_1996_2_4_a15
ER  - 
%0 Journal Article
%A J. Bosgiraud
%T Harmonic solution for the inverse problem of the Newtonian potential theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1195-1204
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a15/
%G ru
%F FPM_1996_2_4_a15
J. Bosgiraud. Harmonic solution for the inverse problem of the Newtonian potential theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1195-1204. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a15/