The model theory of divisible modules over a domain
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 563-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connected module $M$ over a commutative ring $R$ has a regular generic type iff it is divisible as a module over the integral domain $R/\!\operatorname{ann}_R (M)$. Given a divisible module $M$ over an integral domain $R$, we identify a certain ring $R(M)$ introduced by Facchini as the ring of definable endomorphisms of $M$. If $M$ is strongly minimal, then either $R(M)$ is a field and $M$ an infinite vector space over $R(M)$, or $R(M)$ is a 1-dimensional noetherian domain all of whose simple modules are finite. Matlis' theory of divisible modules over such a ring is applied to characterize the remaining strongly minimal modules as precisely those divisible $R(M)$-modules for which every primary component of the torsion submodule is artinian. We also note that if a superstable module $M$ over a commutative ring $R$ (with no additional structure) has a regular generic type, then the $U$-rank of $M$ is an indecomposable ordinal. If $R$ is a complete local 1-dimensional noetherian domain that is not of Cohen-Macaulay finite representation type, we apply Auslander's theory of almost-split sequences and the compactness of the Ziegler Spectrum to produce a big (non-artinian) torsion divisible pure-injective indecomposable $R$-module and, by elementary duality, a big (not finitely generated) pure-injective indecomposable Cohen-Macaulay $R$-module.
@article{FPM_1996_2_2_a8,
     author = {I. Herzog and V. A. Puninskaya},
     title = {The model theory of divisible modules over a domain},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {563--594},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a8/}
}
TY  - JOUR
AU  - I. Herzog
AU  - V. A. Puninskaya
TI  - The model theory of divisible modules over a domain
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 563
EP  - 594
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a8/
LA  - ru
ID  - FPM_1996_2_2_a8
ER  - 
%0 Journal Article
%A I. Herzog
%A V. A. Puninskaya
%T The model theory of divisible modules over a domain
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 563-594
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a8/
%G ru
%F FPM_1996_2_2_a8
I. Herzog; V. A. Puninskaya. The model theory of divisible modules over a domain. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 563-594. http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a8/