Process of successive cleaning
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 619-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Poisson stream of particles arrives to a half-line $[0;\infty)$ with rate $\lambda$ and mean density 1. A server moves on a half-line at unit speed to the right, stopping to perform service of every particle encountered. The service times are all taken to be mutually independent and exponentially distributed with mean $\mu$. At the initial moment the server is in zero. We study $Y(T)$ — its position at the moment $T$. The main result is the following: $$ \lim_{T\to\infty}\frac{Y(T)}{\ln T} =\frac{\mu}{\lambda}\qquad\mboxa.s. $$
@article{FPM_1996_2_2_a12,
     author = {I. A. Kurkova},
     title = {Process of successive cleaning},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {619--624},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a12/}
}
TY  - JOUR
AU  - I. A. Kurkova
TI  - Process of successive cleaning
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 619
EP  - 624
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a12/
LA  - ru
ID  - FPM_1996_2_2_a12
ER  - 
%0 Journal Article
%A I. A. Kurkova
%T Process of successive cleaning
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 619-624
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a12/
%G ru
%F FPM_1996_2_2_a12
I. A. Kurkova. Process of successive cleaning. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 619-624. http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a12/