Process of successive cleaning
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 619-624
Cet article a éte moissonné depuis la source Math-Net.Ru
A Poisson stream of particles arrives to a half-line $[0;\infty)$ with rate $\lambda$ and mean density 1. A server moves on a half-line at unit speed to the right, stopping to perform service of every particle encountered. The service times are all taken to be mutually independent and exponentially distributed with mean $\mu$. At the initial moment the server is in zero. We study $Y(T)$ — its position at the moment $T$. The main result is the following: $$ \lim_{T\to\infty}\frac{Y(T)}{\ln T} =\frac{\mu}{\lambda}\qquad\mboxa.s. $$
@article{FPM_1996_2_2_a12,
author = {I. A. Kurkova},
title = {Process of successive cleaning},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {619--624},
year = {1996},
volume = {2},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a12/}
}
I. A. Kurkova. Process of successive cleaning. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 619-624. http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a12/