On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 161-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the set $\mathcal L_{k}^{l}$ of all closed subsets of $l$-valued logic $P_l$, which may be reflected homomorphically onto $P_k$ are investigated. We determined all maximal elements of $\mathcal L_{k}^{l}$ and proved that any maximal element is generated by a single function. The asymptotic formula for the number of in pairs nonisomorphic maximal elements of $\bigcup_{k=2}^l\mathcal L_{k}^{l}$ was obtained.
@article{FPM_1996_2_1_a7,
     author = {A. V. Makarov},
     title = {On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--170},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a7/}
}
TY  - JOUR
AU  - A. V. Makarov
TI  - On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 161
EP  - 170
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a7/
LA  - ru
ID  - FPM_1996_2_1_a7
ER  - 
%0 Journal Article
%A A. V. Makarov
%T On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 161-170
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a7/
%G ru
%F FPM_1996_2_1_a7
A. V. Makarov. On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 161-170. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a7/