On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 161-170
The properties of the set $\mathcal L_{k}^{l}$ of all closed subsets of $l$-valued logic $P_l$, which may be reflected homomorphically onto $P_k$ are investigated. We determined all maximal elements of $\mathcal L_{k}^{l}$ and proved that any maximal element is generated by a single function. The asymptotic formula for the number of in pairs nonisomorphic maximal elements of $\bigcup_{k=2}^l\mathcal L_{k}^{l}$ was obtained.
@article{FPM_1996_2_1_a7,
author = {A. V. Makarov},
title = {On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {161--170},
year = {1996},
volume = {2},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a7/}
}
A. V. Makarov. On properties of maximal homomorphic prototypes of $k$-valued logic in $l$-valued logic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 161-170. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a7/