On ranks of elements of free groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 313-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for a system of elements of the free group to have given rank is obtained. This result is a group analog of the theorem of A. A. Mikhalev and A. A. Zolotykh on ranks of system of elements in free Lie algebras.
@article{FPM_1996_2_1_a20,
     author = {U. U. Umirbaev},
     title = {On ranks of elements of free groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {313--315},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a20/}
}
TY  - JOUR
AU  - U. U. Umirbaev
TI  - On ranks of elements of free groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 313
EP  - 315
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a20/
LA  - ru
ID  - FPM_1996_2_1_a20
ER  - 
%0 Journal Article
%A U. U. Umirbaev
%T On ranks of elements of free groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 313-315
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a20/
%G ru
%F FPM_1996_2_1_a20
U. U. Umirbaev. On ranks of elements of free groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 313-315. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a20/