The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 309-312
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the perturbation theory corrections we find the asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$ with coefficient up to sum-converging members.
@article{FPM_1996_2_1_a19,
author = {A. I. Sedov},
title = {The asymptotics for eigenvalues of a differential {Jacobi-type} operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {309--312},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/}
}
TY - JOUR
AU - A. I. Sedov
TI - The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 1996
SP - 309
EP - 312
VL - 2
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/
LA - ru
ID - FPM_1996_2_1_a19
ER -
%0 Journal Article
%A A. I. Sedov
%T The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 309-312
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/
%G ru
%F FPM_1996_2_1_a19
A. I. Sedov. The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 309-312. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/