The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 309-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the perturbation theory corrections we find the asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$ with coefficient up to sum-converging members.
@article{FPM_1996_2_1_a19,
     author = {A. I. Sedov},
     title = {The asymptotics for eigenvalues of a differential {Jacobi-type} operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {309--312},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/}
}
TY  - JOUR
AU  - A. I. Sedov
TI  - The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 309
EP  - 312
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/
LA  - ru
ID  - FPM_1996_2_1_a19
ER  - 
%0 Journal Article
%A A. I. Sedov
%T The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 309-312
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/
%G ru
%F FPM_1996_2_1_a19
A. I. Sedov. The asymptotics for eigenvalues of a differential Jacobi-type operator with $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 309-312. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a19/