The polyhedron's volume as a function of length of its edges
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 305-307.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the volume of a sphere type polyhedron may be calculated as a root of a polynomial with coefficients depending only on the polyhedron's metric and hence for these polyhedra the volume invariance hypothesis is established.
@article{FPM_1996_2_1_a18,
     author = {I. Kh. Sabitov},
     title = {The polyhedron's volume as a function of length of its edges},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {305--307},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a18/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - The polyhedron's volume as a function of length of its edges
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 305
EP  - 307
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a18/
LA  - ru
ID  - FPM_1996_2_1_a18
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T The polyhedron's volume as a function of length of its edges
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 305-307
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a18/
%G ru
%F FPM_1996_2_1_a18
I. Kh. Sabitov. The polyhedron's volume as a function of length of its edges. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 305-307. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a18/