The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 289-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a faithful irreducible representation of a finite dimensional Lie superalgebra over a algebraically closed field of characteristic zero is determined by the identities of its Grassmann envelope.
@article{FPM_1996_2_1_a15,
     author = {A. A. Zolotykh},
     title = {The equivalence of irreducible representations of finite dimensional {Lie} superalgebras with the same identities},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {289--293},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/}
}
TY  - JOUR
AU  - A. A. Zolotykh
TI  - The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 289
EP  - 293
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/
LA  - ru
ID  - FPM_1996_2_1_a15
ER  - 
%0 Journal Article
%A A. A. Zolotykh
%T The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 289-293
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/
%G ru
%F FPM_1996_2_1_a15
A. A. Zolotykh. The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 289-293. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/