The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 289-293
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that a faithful irreducible representation of a finite dimensional Lie superalgebra over a algebraically closed field of characteristic zero is determined by the identities of its Grassmann envelope.
@article{FPM_1996_2_1_a15,
author = {A. A. Zolotykh},
title = {The equivalence of irreducible representations of finite dimensional {Lie} superalgebras with the same identities},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {289--293},
publisher = {mathdoc},
volume = {2},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/}
}
TY - JOUR AU - A. A. Zolotykh TI - The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1996 SP - 289 EP - 293 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/ LA - ru ID - FPM_1996_2_1_a15 ER -
%0 Journal Article %A A. A. Zolotykh %T The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities %J Fundamentalʹnaâ i prikladnaâ matematika %D 1996 %P 289-293 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/ %G ru %F FPM_1996_2_1_a15
A. A. Zolotykh. The equivalence of irreducible representations of finite dimensional Lie superalgebras with the same identities. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 1, pp. 289-293. http://geodesic.mathdoc.fr/item/FPM_1996_2_1_a15/