On types of overexponential growth in Lie PI-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 989-1007.

Voir la notice de l'article provenant de la source Math-Net.Ru

The growth function of identities $c_n(\mathcal{V})$ for varieties of Lie algebras is studied; where $c_n(\mathcal{V})$ is the dimension of a linear span of multilinear words in $n$ distinct letters in a free algebra $F(\mathcal{V},X)$ of the variety $\mathcal{V}$. The main results are as follows: the description of types of overexponential growth is suggested; the growth of identities for polynilpotent varieties is found. A complexity function $\mathcal{C}(\mathcal{V},z)$ is used; it corresponds to any nontrivial variety of Lie algebras $\mathcal{V}$ and is an entire function of a complex variable.
@article{FPM_1995_1_4_a9,
     author = {V. M. Petrogradsky},
     title = {On types of overexponential growth in {Lie} {PI-algebras}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {989--1007},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a9/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
TI  - On types of overexponential growth in Lie PI-algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 989
EP  - 1007
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a9/
LA  - ru
ID  - FPM_1995_1_4_a9
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%T On types of overexponential growth in Lie PI-algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 989-1007
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a9/
%G ru
%F FPM_1995_1_4_a9
V. M. Petrogradsky. On types of overexponential growth in Lie PI-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 989-1007. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a9/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, M., 1985 | MR

[2] Regev A., “Existence of polynomial identities in $A\otimes B$”, Bull. Am. Math. Soc., 77:6 (1971), 1067–1069 | DOI | MR | Zbl

[3] Benediktovich I. I., Zalesskii A. E., “$T$-idealy svobodnoi algebry Li s polinomialnym rostom posledovatelnosti korazmernostei”, Vestsi AN BSSR, 3 (1980), 5–10 | MR | Zbl

[4] Mischenko S. P., “O mnogoobraziyakh polinomialnogo rosta algebr Li nad polem nulevoi kharakteristiki”, Mat. zametki, 40:6 (1986), 713–721 | MR

[5] Mischenko S. P., “Rost mnogoobrazii algebr Li”, Uspekhi mat. nauk, 45:6 (1990), 25–45 | Zbl

[6] Mischenko S. P., “K probleme Engelevosti”, Mat. sbornik, 124:1 (1984), 57–67

[7] Kirillov A. A., Molev A. I., Ob algebraicheskoi strukture algebry Li vektornykh polei, Preprint No 168, Institut prikladnoi matematiki im. Keldysha, 1985 | MR

[8] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, M., 1989 | MR

[9] Volichenko I. B., “O mnogoobrazii algebr Li $\mathcal A\mathcal N_2$ nad polem kharakteristiki nul”, DAN BSSR, r25:12 (1981), 1063–1066 | MR | Zbl

[10] Grishkov A. N., “O roste mnogoobrazii algebr Li”, Mat. zametki, 44:1 (1988), 51–54 | MR | Zbl

[11] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[12] Razmyslov Yu. P., “O slozhnosti mnogoobrazii algebr Li i ikh predstavlenii”, Vestnik MGU, 1988, no. 4, 75–78 | MR

[13] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[14] Petrogradskii V. M., “O nekotorykh tipakh promezhutochnogo rosta v algebrakh Li”, Uspekhi mat. nauk, 1993, no. 5, 181–182 | MR | Zbl

[15] Petrogradsky V. M., “Intermediate growth in Lie algebras and their enveloping algebras”, J. Algebra, 179:2 (1996), 459–482 | DOI | MR | Zbl

[16] Shabat B. V., Vvedenie v kompleksnyi analiz, t. 1, Nauka, M., 1985 | MR

[17] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, M., 1979 | MR | Zbl

[18] Bokut L. A., “Baza svobodnykh polinilpotentnykh algebr Li”, Algebra i logika, 2:4 (1963), 13–19 | MR | Zbl

[19] Bahturin Yu. A., Mikhalev A. A., Petrogradsky V. M., Zaicev M. V., Infinite Dimensional Lie Superalgebras, Gruyter Expositions in Mathematics, 7, Walter de Gruyter, Berlin, 1992 | MR

[20] Endryus G., Teoriya razbienii, M., 1982 | MR