Convergence exponent of singular integral in generalized Hilbert–Kamke problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 939-951
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we find exact value of the convergence exponent of singular integral in the problem of simultaneous representation of increasing set of natural numbers $N_1,\ldots,N_r$ by sum of terms $[x^{n_1+\theta}],[x^{n_2+\theta}],\ldots,[x^{n_r+\theta}]$ ($n_1$ — natural numbers, $0\leq\theta\leq1$). We consider integral: $$ \theta_0=\int\limits_{\mathbb R^r}|I(\alpha_1,\ldots,\alpha_r)|^k\,d\alpha_1\ldots d\alpha_r, $$ where $k$ is an unrestricted index and $$ I(\alpha_1,\ldots,\alpha _r)=\int\limits_{0}^{1}\exp\biggl\{2\pi i\sum_{j=1}^{r}\alpha_jx^{n_j+\theta}\biggr\}\,dx. $$ It is proved that $\theta_0$ converges when $k>k_0$ and diverges when $k\leq k_0$ where $$ k_0=\max \left\{n_1+\cdots+n_r+r\theta,\frac{r(r+1)}{2}+1\right\}. $$
@article{FPM_1995_1_4_a6,
     author = {A. Zrein},
     title = {Convergence exponent of singular integral in generalized {Hilbert{\textendash}Kamke} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {939--951},
     year = {1995},
     volume = {1},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/}
}
TY  - JOUR
AU  - A. Zrein
TI  - Convergence exponent of singular integral in generalized Hilbert–Kamke problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 939
EP  - 951
VL  - 1
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/
LA  - ru
ID  - FPM_1995_1_4_a6
ER  - 
%0 Journal Article
%A A. Zrein
%T Convergence exponent of singular integral in generalized Hilbert–Kamke problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 939-951
%V 1
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/
%G ru
%F FPM_1995_1_4_a6
A. Zrein. Convergence exponent of singular integral in generalized Hilbert–Kamke problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 939-951. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/

[1] Arkhipov G. I., “O probleme Gilberta–Kamke”, Izv. AN SSSR. Ser. matematika, 48:1 (1984), 3–52 | MR | Zbl

[2] Zhitkov A. N., “Otsenki trigonometricheskikh integralov”, Mat. zametki, 40:3 (1986), 310–320 | MR | Zbl

[3] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR