Convergence exponent of singular integral in generalized Hilbert--Kamke problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 939-951.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we find exact value of the convergence exponent of singular integral in the problem of simultaneous representation of increasing set of natural numbers $N_1,\ldots,N_r$ by sum of terms $[x^{n_1+\theta}],[x^{n_2+\theta}],\ldots,[x^{n_r+\theta}]$ ($n_1$ — natural numbers, $0\leq\theta\leq1$). We consider integral: $$ \theta_0=\int\limits_{\mathbb R^r}|I(\alpha_1,\ldots,\alpha_r)|^k\,d\alpha_1\ldots d\alpha_r, $$ where $k$ is an unrestricted index and $$ I(\alpha_1,\ldots,\alpha _r)=\int\limits_{0}^{1}\exp\biggl\{2\pi i\sum_{j=1}^{r}\alpha_jx^{n_j+\theta}\biggr\}\,dx. $$ It is proved that $\theta_0$ converges when $k>k_0$ and diverges when $k\leq k_0$ where $$ k_0=\max \left\{n_1+\cdots+n_r+r\theta,\frac{r(r+1)}{2}+1\right\}. $$
@article{FPM_1995_1_4_a6,
     author = {A. Zrein},
     title = {Convergence exponent of singular integral in generalized {Hilbert--Kamke} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {939--951},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/}
}
TY  - JOUR
AU  - A. Zrein
TI  - Convergence exponent of singular integral in generalized Hilbert--Kamke problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 939
EP  - 951
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/
LA  - ru
ID  - FPM_1995_1_4_a6
ER  - 
%0 Journal Article
%A A. Zrein
%T Convergence exponent of singular integral in generalized Hilbert--Kamke problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 939-951
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/
%G ru
%F FPM_1995_1_4_a6
A. Zrein. Convergence exponent of singular integral in generalized Hilbert--Kamke problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 939-951. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/

[1] Arkhipov G. I., “O probleme Gilberta–Kamke”, Izv. AN SSSR. Ser. matematika, 48:1 (1984), 3–52 | MR | Zbl

[2] Zhitkov A. N., “Otsenki trigonometricheskikh integralov”, Mat. zametki, 40:3 (1986), 310–320 | MR | Zbl

[3] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR