Convergence exponent of singular integral in generalized Hilbert--Kamke problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 939-951
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we find exact value of the convergence exponent of singular integral in the problem of simultaneous representation of increasing set of natural numbers $N_1,\ldots,N_r$ by sum of terms $[x^{n_1+\theta}],[x^{n_2+\theta}],\ldots,[x^{n_r+\theta}]$ ($n_1$ — natural numbers, $0\leq\theta\leq1$). We consider integral:
$$
\theta_0=\int\limits_{\mathbb R^r}|I(\alpha_1,\ldots,\alpha_r)|^k\,d\alpha_1\ldots d\alpha_r,
$$
where $k$ is an unrestricted index and
$$
I(\alpha_1,\ldots,\alpha _r)=\int\limits_{0}^{1}\exp\biggl\{2\pi i\sum_{j=1}^{r}\alpha_jx^{n_j+\theta}\biggr\}\,dx.
$$
It is proved that $\theta_0$ converges when $k>k_0$ and diverges when $k\leq k_0$ where
$$
k_0=\max \left\{n_1+\cdots+n_r+r\theta,\frac{r(r+1)}{2}+1\right\}.
$$
@article{FPM_1995_1_4_a6,
author = {A. Zrein},
title = {Convergence exponent of singular integral in generalized {Hilbert--Kamke} problem},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {939--951},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/}
}
A. Zrein. Convergence exponent of singular integral in generalized Hilbert--Kamke problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 939-951. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a6/