Two-dimensional real triangle quasirepresentations of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1129-1132
Voir la notice de l'article provenant de la source Math-Net.Ru
Definition. By two-dimensional real triangle quasirepresentation of group $G$ we mean the mapping $\Phi$ of group $G$ into the group of two-dimensional real triangle matrices $T(2,R)$ such that if
$$
\Phi (x)=\begin{pmatrix}
\alpha(x) \varphi(x)
\\
0 \sigma(x)
\end{pmatrix},
$$
then:
\begin{tabular}[t]{l}
1) $\alpha,\,\sigma$ are homomorphisms of group $G$ into $R^*$;
2) the set $\big\{\|\Phi(xy)-\Phi(x)\Phi(y)\|;\,x,y\in G\big\}$ is bounded.
\end{tabular}
For brevity we shall call such mapping a quasirepresentation or a $(\alpha,\sigma)$-quasirepresentation for given diagonal matrix elements $\alpha$ and $\sigma$. We shall say that quasirepresentation is nontrivial if it is neither representation nor bounded. In this paper the criterion of existence of nontrivial $(\alpha,\sigma)$-quasirepresentation on groups is established. It is shown that if $G=A\ast B$ is the free product of finite nontrivial groups $A$ and $B$ and $A$ or $B$ has more than two elements then for every homomorphism $\alpha$ of group $G$ into $R^*$ there are
$(\alpha,\varepsilon)$-, $(\varepsilon,\alpha)$- and $(\alpha,\alpha)$-quasirepresentation. Here the homomorphism $\varepsilon$ maps $G$ into 1.
@article{FPM_1995_1_4_a25,
author = {V. A. Faiziev},
title = {Two-dimensional real triangle quasirepresentations of groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1129--1132},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a25/}
}
V. A. Faiziev. Two-dimensional real triangle quasirepresentations of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1129-1132. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a25/