Two-dimensional real triangle quasirepresentations of groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1129-1132
Definition. By two-dimensional real triangle quasirepresentation of group $G$ we mean the mapping $\Phi$ of group $G$ into the group of two-dimensional real triangle matrices $T(2,R)$ such that if $$ \Phi (x)=\begin{pmatrix} \alpha(x) \varphi(x) \\ 0 \sigma(x) \end{pmatrix}, $$ then: \begin{tabular}[t]{l} 1) $\alpha,\,\sigma$ are homomorphisms of group $G$ into $R^*$; 2) the set $\big\{\|\Phi(xy)-\Phi(x)\Phi(y)\|;\,x,y\in G\big\}$ is bounded. \end{tabular} For brevity we shall call such mapping a quasirepresentation or a $(\alpha,\sigma)$-quasirepresentation for given diagonal matrix elements $\alpha$ and $\sigma$. We shall say that quasirepresentation is nontrivial if it is neither representation nor bounded. In this paper the criterion of existence of nontrivial $(\alpha,\sigma)$-quasirepresentation on groups is established. It is shown that if $G=A\ast B$ is the free product of finite nontrivial groups $A$ and $B$ and $A$ or $B$ has more than two elements then for every homomorphism $\alpha$ of group $G$ into $R^*$ there are $(\alpha,\varepsilon)$-, $(\varepsilon,\alpha)$- and $(\alpha,\alpha)$-quasirepresentation. Here the homomorphism $\varepsilon$ maps $G$ into 1.
@article{FPM_1995_1_4_a25,
author = {V. A. Faiziev},
title = {Two-dimensional real triangle quasirepresentations of groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1129--1132},
year = {1995},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a25/}
}
V. A. Faiziev. Two-dimensional real triangle quasirepresentations of groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1129-1132. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a25/
[1] Faiziev V. A., “Psevdokharaktery na svobodnykh proizvedeniyakh polugrupp”, Funktsion. analiz i ego prilozh., 21:1 (1987), 86–87 | MR | Zbl
[2] Faiziev V. A., “Psevdokharaktery na gruppe $SL(2,Z)$”, Funktsion. analiz i ego prilozh., 26:4 (1992), 77–79 | MR | Zbl
[3] Faiziev V. A., “Ob ustoichivosti odnogo funktsionalnogo uravneniya na gruppakh”, Uspekhi mat. nauk., 48:1 (1993), 205–206 | MR
[4] Shtern A. I., “Kvazipredstavleniya i psevdopredstavleniya”, Funktsion. analiz i ego prilozh., 25:2 (1991), 70–73 | MR | Zbl