On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1125-1128
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we prove the convergence in the norm of the Sobolev spaces $H^s(\mathbb R^{N})$ of the spectral expansions corresponding to the self-adjont extansions in $L^2(\mathbb R^{N})$ of the operators in the following way:
$$
A(x,D)=P(D)+Q(x),
$$
where $P(D)$ is the self-adjont elliptic operator with constant coefficients and of order $m$ and real potential $Q(x)$ belongs to Kato space. As a consequence of this result we have the uniform convergence of these expansions for the case $m>\frac{N}{2}$.
@article{FPM_1995_1_4_a24,
author = {V. S. Serov},
title = {On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1125--1128},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a24/}
}
TY - JOUR
AU - V. S. Serov
TI - On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 1995
SP - 1125
EP - 1128
VL - 1
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a24/
LA - ru
ID - FPM_1995_1_4_a24
ER -
%0 Journal Article
%A V. S. Serov
%T On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1125-1128
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a24/
%G ru
%F FPM_1995_1_4_a24
V. S. Serov. On the convergence in $H^{s}$-norm of the spectral expansions corresponding to the differential operators with singularity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1125-1128. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a24/