On the structure of the special linear groups over Laurent polynomial rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1111-1114
In this note we prove the following result. Let $C$ be a regular ring such that $\mathrm{SK}(C)=0$. Then the groups $SL_r\bigl(C\bigl[[T_1,\ldots,T_m]\bigr] \left[X_1^{\pm1},\ldots,X_n^{\pm 1},Y_1,\ldots,Y_s\right]\bigr)$ are generated by elementary matrices for all integers $r\geq\max(3,\dim C+2)$.
@article{FPM_1995_1_4_a21,
author = {V. I. Kopeiko},
title = {On the structure of the special linear groups over {Laurent} polynomial rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1111--1114},
year = {1995},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a21/}
}
V. I. Kopeiko. On the structure of the special linear groups over Laurent polynomial rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1111-1114. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a21/
[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR
[2] Suslin A. A., “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR Ser. matem., 41:2 (1977), 235–252 | MR | Zbl
[3] Matsumura H., “Commutative ring theory”, Cambr. studies in advan. math., 8 (1986), 3–320 | MR
[4] Vorst T., “The general linear groups of polynomial rings over regular rings”, Commun. Alg., 9:5 (1981), 499–509 | DOI | MR | Zbl
[5] Bass Kh., Algebraicheskaya K-teoriya, Mir, M., 1973 | MR | Zbl