Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_1995_1_4_a18, author = {G. M. Brodskii}, title = {A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {1095--1099}, publisher = {mathdoc}, volume = {1}, number = {4}, year = {1995}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/} }
TY - JOUR AU - G. M. Brodskii TI - A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1995 SP - 1095 EP - 1099 VL - 1 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/ LA - ru ID - FPM_1995_1_4_a18 ER -
%0 Journal Article %A G. M. Brodskii %T A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators %J Fundamentalʹnaâ i prikladnaâ matematika %D 1995 %P 1095-1099 %V 1 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/ %G ru %F FPM_1995_1_4_a18
G. M. Brodskii. A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1095-1099. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/
[1] Anderson F. W., Fuller K. R., Rings and categories of modules, Springer, New York e.a., 1992 | MR
[2] Brodskii G. M., “Ob ekvivalentnosti i dvoistvennosti Mority”, Uspekhi matem. nauk, 37:4 (1982), 145–146 | MR | Zbl
[3] Brodskii G. M., “O dualizmakh v modulyakh i uslovii $AB5^*$”, Uspekhi matem. nauk, 38:2 (1983), 201–202 | MR | Zbl
[4] Brodskii G. M., “O poludualizmakh modulei i dvoistvennosti Mority”, Tez. soobsch. XIX Vsesoyuznoi algebraicheskoi konferentsii, Ch. 1, Lvov, 1987, 44
[5] Brodskii G. M., “Annulyatory i slabye topologii v modulyakh”, Fundamentalnaya i prikladnaya matematika, 1:2 (1995), 529–532 | MR | Zbl
[6] Brodskii G. M., Wisbauer R., “On duality theory and $AB5^*$ modules”, J. Pure and Appl. Algebra
[7] Gómez Pardo J. L., Guil Asensio P. A., Wisbauer R., “Morita dualities induced by the $M$-dual functors”, Commun. Algebra, 22:14 (1994), 5903–5934 | DOI | MR | Zbl
[8] Müller B. J., “Linear compactness and Morita duality”, J. Algebra, 16:1 (1970), 60–66 | DOI | MR | Zbl
[9] Ohtake K., “A generalization of Kato's theorem on Morita duality”, J. Pure and Appl. Algebra, 17:3 (1980), 323–332 | DOI | MR | Zbl
[10] Vámos P., “Classical rings”, J. Algebra, 34:1 (1975), 114–129 | DOI | MR | Zbl
[11] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Reading, 1991 | MR | Zbl
[12] Zelmanowitz J. M., Jansen W., “Duality modules and Morita duality”, J. Algebra, 125:2 (1989), 257–277 | DOI | MR | Zbl