A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1095-1099.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Morita equivalence of rings has a dualization different from the Morita duality. We consider applications of the developed duality theory to studying endomorphism rings of finitely cogenerated injective cogenerators.
@article{FPM_1995_1_4_a18,
     author = {G. M. Brodskii},
     title = {A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1095--1099},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/}
}
TY  - JOUR
AU  - G. M. Brodskii
TI  - A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 1095
EP  - 1099
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/
LA  - ru
ID  - FPM_1995_1_4_a18
ER  - 
%0 Journal Article
%A G. M. Brodskii
%T A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1095-1099
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/
%G ru
%F FPM_1995_1_4_a18
G. M. Brodskii. A duality theory with applications to endomorphism rings of finitely cogenerated injective cogenerators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1095-1099. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a18/

[1] Anderson F. W., Fuller K. R., Rings and categories of modules, Springer, New York e.a., 1992 | MR

[2] Brodskii G. M., “Ob ekvivalentnosti i dvoistvennosti Mority”, Uspekhi matem. nauk, 37:4 (1982), 145–146 | MR | Zbl

[3] Brodskii G. M., “O dualizmakh v modulyakh i uslovii $AB5^*$”, Uspekhi matem. nauk, 38:2 (1983), 201–202 | MR | Zbl

[4] Brodskii G. M., “O poludualizmakh modulei i dvoistvennosti Mority”, Tez. soobsch. XIX Vsesoyuznoi algebraicheskoi konferentsii, Ch. 1, Lvov, 1987, 44

[5] Brodskii G. M., “Annulyatory i slabye topologii v modulyakh”, Fundamentalnaya i prikladnaya matematika, 1:2 (1995), 529–532 | MR | Zbl

[6] Brodskii G. M., Wisbauer R., “On duality theory and $AB5^*$ modules”, J. Pure and Appl. Algebra

[7] Gómez Pardo J. L., Guil Asensio P. A., Wisbauer R., “Morita dualities induced by the $M$-dual functors”, Commun. Algebra, 22:14 (1994), 5903–5934 | DOI | MR | Zbl

[8] Müller B. J., “Linear compactness and Morita duality”, J. Algebra, 16:1 (1970), 60–66 | DOI | MR | Zbl

[9] Ohtake K., “A generalization of Kato's theorem on Morita duality”, J. Pure and Appl. Algebra, 17:3 (1980), 323–332 | DOI | MR | Zbl

[10] Vámos P., “Classical rings”, J. Algebra, 34:1 (1975), 114–129 | DOI | MR | Zbl

[11] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Reading, 1991 | MR | Zbl

[12] Zelmanowitz J. M., Jansen W., “Duality modules and Morita duality”, J. Algebra, 125:2 (1989), 257–277 | DOI | MR | Zbl