Classification of weakly Noetherian monomial algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1085-1089

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe weakly Noetherian (i.e. satisfying the ascending chain condition on two-sided ideals) monomial algebras as follows. Let $A$ be a weakly Noetherian monomial algebra. Then there exists a Noetherian set of (super-)words $\mathcal U$ such that every non-zero word in $A$ is a subword of a word belonging to $\mathcal U$. A finite set of words or superwords $\mathcal U$ is said to be Noetherian, if every element of $\mathcal U$ is either a finite word or a product of a finite word and one or two uniformly-recurring superwords (in the last case one of these superwords is infinite to the left and the other one to the right).
@article{FPM_1995_1_4_a16,
     author = {A. Ya. Belov},
     title = {Classification of weakly {Noetherian} monomial algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1085--1089},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - Classification of weakly Noetherian monomial algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 1085
EP  - 1089
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/
LA  - ru
ID  - FPM_1995_1_4_a16
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T Classification of weakly Noetherian monomial algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1085-1089
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/
%G ru
%F FPM_1995_1_4_a16
A. Ya. Belov. Classification of weakly Noetherian monomial algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1085-1089. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/