Classification of weakly Noetherian monomial algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1085-1089.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe weakly Noetherian (i.e. satisfying the ascending chain condition on two-sided ideals) monomial algebras as follows. Let $A$ be a weakly Noetherian monomial algebra. Then there exists a Noetherian set of (super-)words $\mathcal U$ such that every non-zero word in $A$ is a subword of a word belonging to $\mathcal U$. A finite set of words or superwords $\mathcal U$ is said to be Noetherian, if every element of $\mathcal U$ is either a finite word or a product of a finite word and one or two uniformly-recurring superwords (in the last case one of these superwords is infinite to the left and the other one to the right).
@article{FPM_1995_1_4_a16,
     author = {A. Ya. Belov},
     title = {Classification of weakly {Noetherian} monomial algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1085--1089},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - Classification of weakly Noetherian monomial algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1995
SP  - 1085
EP  - 1089
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/
LA  - ru
ID  - FPM_1995_1_4_a16
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T Classification of weakly Noetherian monomial algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1995
%P 1085-1089
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/
%G ru
%F FPM_1995_1_4_a16
A. Ya. Belov. Classification of weakly Noetherian monomial algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 1 (1995) no. 4, pp. 1085-1089. http://geodesic.mathdoc.fr/item/FPM_1995_1_4_a16/

[1] Beidar K. I., Latyshev V. N., Markov V. T., Mikhalev A. V., Skornyakov L. A., Tuganbaev A. A., “Assotsiativnye koltsa”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 22, VINITI, M., 1984, 3–115 | MR

[2] Bokut L. A., Lvov I. V., Kharchenko V. K., “Nekommutativnye koltsa”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 18, VINITI, M., 1988, 5–116 | MR

[3] Borisenko V. V., “O matrichnykh predstavleniyakh konechno opredelennykh algebr, zadannykh konechnym mnozhestvom slov”, Vestn. MGU. Ser. mat., mekh., 1985, no. 4, 75–77 | MR | Zbl

[4] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 57, VINITI, M., 1990, 5–177 | MR

[5] Belov A., Gateva T., Proceedings of Taivan-Moscow Algebra Workshop

[6] Gateva-Ivanova T., “Noetherian properties of skew polynomial rings with binomial relations”, Repts/ Dep. Math. Univ. Stockholm., 1991, no. 8, 1–22

[7] Gateva-Ivanova T., “Algorithmic determination of the Jacobson radical of monomial algebras”, Lect. Notes Comput. Sci., 1989, no. 378, 355–364 | MR | Zbl

[8] Gateva-Ivanova T., Latyshev V., “On recognizable properties of associative algebras”, J. Symb. Comput., 6:2–3 (1988), 371–388 | DOI | MR | Zbl

[9] Luca A., Varricchi S., “Combinatorial properties of uniformly recurrent words and applications to semigroups”, Int. J. of Algebra and Comput., 1:2 (1991), 227–245 | DOI | MR | Zbl

[10] Okninski J., “On monomial algebras”, Arch. Math., 45 (1987), 417–423 | MR

[11] Okninski J., Semigroup algebras, Marcel Dekker, 1991, 357 | MR

[12] Restivo A., Reutenauer C., “Some applications of a theorem of Shirshov to language theory”, Inf. and Contr., 57:2–3 (1983), 205–213 | DOI | MR | Zbl

[13] Restivo A., Reutenauer C., “Rational languages and the Burnside problem”, Theor. Comput. Sci., 40:1 (1985), 13–30 | DOI | MR | Zbl

[14] Rowen L. H., Polynomial Identities in Ring Theory, Acad. Press, New York, 1980 | MR | Zbl